Skip to main content

Advertisement

Log in

Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Erratum to this article was published on 09 July 2005

Abstract

Purpose

Cardiac scintigraphic studies using 123I-labeled metaiodobenzylguanidine ([123I]MIBG) have demonstrated heterogeneous myocardial accumulation of MIBG in diabetes. The accumulation has been found to correlate with a heterogeneous decrease in the expression of norepinephrine transporter (NET). In diabetic peripheral nerve tissue, polyol pathways are activated and cause nerve dysfunction and degeneration. However, there has been little research on the polyol pathway and cardiac sympathetic nerves. Therefore, to assess the influence of the polyol pathway on cardiac sympathetic nervous function, we investigated the regional accumulation of MIBG and NET protein expression in diabetic model rats treated with aldose reductase inhibitor (ARI) for the blockade of polyol pathways.

Methods

Rats were given a single intravenous injection of streptozotocin (n=76, STZ-D rats). Starting the day after STZ injection, ARI was administered daily to 42 of the rats for 4 weeks (ARI-D rats). To assess the cardiac sympathetic nervous function, [125I]MIBG autoradiographic experiments were carried out. Finally, NET protein expression was assessed with a saturation binding assay.

Results

The myocardial sorbitol concentration was significantly higher in STZ-D rats than in ARI-D rats. There was no heterogeneous accumulation of MIBG in ARI-D rats. There was a heterogeneous decrease of NET expression in STZ-D rats, but not in ARI-D or control rats.

Conclusion

The gathered data indicate that the enhanced polyol pathway correlates with the decrease in regional cardiac sympathetic nervous function, and this impairment may lead to the reduction of NET protein in cardiac sympathetic nerves of the diabetic inferior wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart: what have we learnt clinically? Eur J Nucl Med 2000;27:1–6.

    Article  CAS  PubMed  Google Scholar 

  2. Lanza GA. Abnormal cardiac nerve function in syndrome X. Herz 1999;24:97–106.

    CAS  PubMed  Google Scholar 

  3. Merlet P, Valette H, Dubois-Rande JL, Mardon K, Pouillart F, Bourachot ML, et al. Iodine 123-labeled metaiodobenzylguanidine imaging in heart disease. J Nucl Cardiol 1994;1:S79–85.

    CAS  PubMed  Google Scholar 

  4. Hattori N, Tamaki N, Hayashi T, Masuda I, Kudoh T, Tateno M, et al. Regional abnormality of iodine-123-MIBG in diabetic hearts. J Nucl Med 1996;37:1985–90.

    CAS  PubMed  Google Scholar 

  5. Kreiner G, Wolzt M, Fasching P, Leitha T, Edlmayer A, Korn A, et al. Myocardial m-[123I]iodobenzylguanidine scintigraphy for the assessment of adrenergic cardiac innervation in patients with IDDM. Comparison with cardiovascular reflex tests and relationship to left ventricular function. Diabetes 1995;44:543–9.

    CAS  PubMed  Google Scholar 

  6. Langer A, Freeman MR, Josse RG, Armstrong PW. Metaiodobenzylguanidine imaging in diabetes mellitus: assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. J Am Coll Cardiol 1995;25:610–8.

    Article  CAS  PubMed  Google Scholar 

  7. Schnell O, Kirsch CM, Stemplinger J, Haslbeck M, Standl E. Scintigraphic evidence for cardiac sympathetic dysinnervation in long-term IDDM patients with and without ECG-based autonomic neuropathy. Diabetologia 1995;38:1345–52.

    CAS  PubMed  Google Scholar 

  8. Yagihashi S, Yamagishi SI, Wada Ri R, Baba M, Hohman TC, Yabe-Nishimura C, et al. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain 2001;124:2448–58.

    Article  CAS  PubMed  Google Scholar 

  9. Cameron NE, Cotter MA, Basso M, Hohman TC. Comparison of the effects of inhibitors of aldose reductase and sorbitol dehydrogenase on neurovascular function, nerve conduction and tissue polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia 1997;40:271–81.

    Article  CAS  PubMed  Google Scholar 

  10. Greene DA, Sima AA, Stevens MJ, Feldman EL, Killen PD, Henry DN, et al. Aldose reductase inhibitors: an approach to the treatment of diabetic nerve damage. Diabetes Metab Rev 1993;9:189–217.

    CAS  PubMed  Google Scholar 

  11. Kiyono Y, Iida Y, Kawashima H, Tamaki N, Nishimura H, Saji H. Regional alterations of myocardial norepinephrine transporter density in streptozotocin-induced diabetic rats: implications for heterogeneous cardiac accumulation of MIBG in diabetes. Eur J Nucl Med 2001;28:894–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kiyono Y, Iida Y, Kawashima H, Ogawa M, Tamaki N, Nishimura H, et al. Norepinephrine transporter density as a causative factor in alterations in MIBG myocardial uptake in NIDDM model rats. Eur J Nucl Med Mol Imaging 2002;29:999–1005.

    Article  CAS  PubMed  Google Scholar 

  13. Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 1999;53:580–91.

    CAS  PubMed  Google Scholar 

  14. Malone JI, Knox G, Benford S, Tedesco TA. Red cell sorbitol: an indicator of diabetic control. Diabetes 1980;29:861–4.

    CAS  PubMed  Google Scholar 

  15. Haaparanta M, Paul R, Huovinen R, Kujari H, Bergman J, Solin O, et al. Pharmacokinetics and metabolism of 2-[18 F]fluoro-2-deoxy-D-glucose (FDG) in mammary tumors of antiestrogen-treated rats. Nucl Med Biol 1995;22:483–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurements with the folin phenol reagent. J Biol Chem 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  17. Finegold D, Lattimer SA, Nolle S, Bernstein M, Greene DA. Polyol pathway activity and myo-inositol metabolism. A suggested relationship in the pathogenesis of diabetic neuropathy. Diabetes 1983;32:988–92.

    CAS  PubMed  Google Scholar 

  18. Mayhew JA, Gillon KR, Hawthorne JN. Free and lipid inositol, sorbitol and sugars in sciatic nerve obtained post-mortem from diabetic patients and control subjects. Diabetologia 1983;24:13–15.

    Article  CAS  PubMed  Google Scholar 

  19. Greene DA, Lattimer-Greene S, Sima AA. Pathogenesis of diabetic neuropathy: role of altered phosphoinositide metabolism. Crit Rev Neurobiol 1989;5:143–219.

    CAS  PubMed  Google Scholar 

  20. Zhu X, Eichberg J. 1,2-Diacylglycerol content and its arachidonyl-containing molecular species are reduced in sciatic nerve from streptozotocin-induced diabetic rats. J Neurochem 1990;55:1087–90.

    CAS  PubMed  Google Scholar 

  21. Sima AA, Brismar T. Reversible diabetic nerve dysfunction: structural correlates to electrophysiological abnormalities. Ann Neurol 1985;18:21–29.

    CAS  PubMed  Google Scholar 

  22. Stevens MJ, Feldman EL, Greene DA. The aetiology of diabetic neuropathy: the combined roles of metabolic and vascular defects. Diabet Med 1995;12:566–79.

    CAS  PubMed  Google Scholar 

  23. Ramasamy R, Oates PJ, Schaefer S. Aldose reductase inhibition protects diabetic and nondiabetic rat hearts from ischemic injury. Diabetes 1997;46:292–300.

    CAS  PubMed  Google Scholar 

  24. Amara SG, Kuhar MJ. Neurotransmitter transporters: recent progress. Annu Rev Neurosci 1993;16:73–93.

    Article  CAS  PubMed  Google Scholar 

  25. Addicks K, Boy C, Rosen P. Sympathetic autonomic neuropathy in the heart of the spontaneous diabetic BB rat. Ann Anat 1993;175:253–7.

    CAS  Google Scholar 

  26. Greene DA, Sima AA, Stevens MJ, Feldman EL, Lattimer SA. Complications: neuropathy, pathogenetic considerations. Diabetes Care 1992;15:1902–25.

    CAS  PubMed  Google Scholar 

  27. Vinik AI, Holland MT, Le Beau JM, Liuzzi FJ, Stansberry KB, Colen LB. Diabetic neuropathies. Diabetes Care 1992;15:1926–75.

    CAS  PubMed  Google Scholar 

  28. Cameron NE, Cotter MA. Effects of protein kinase Cβ inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysmetabolism. Diabetes Metab Res Rev 2002;18:315–23.

    Article  CAS  PubMed  Google Scholar 

  29. Apparsundaram S, Galli A, DeFelice LJ, Hartzell HC, Blakely RD. Acute regulation of norepinephrine transport. I. Protein kinase C-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells. J Pharmacol Exp Ther 1998;287:733–43.

    CAS  PubMed  Google Scholar 

  30. Apparsundaram S, Schroeter S, Giovanetti E, Blakely RD. Acute regulation of norepinephrine transport. II. PKC-modulated surface expression of human norepinephrine transporter proteins. J Pharmacol Exp Ther 1998;287:744–51.

    CAS  PubMed  Google Scholar 

  31. Amara SG, Sonders MS, Zahniser NR, Povlock SL, Daniels GM. Molecular physiology and regulation of catecholamine transporters. Adv Pharmacol 1998;42:164–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid for General Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the 21st Century COE Program “Knowledge Information Infrastructure for Genome Science”. We would like to thank Daiichi Radioisotope Laboratories Ltd., Tokyo, Japan, for providing [125I]MIBG, and Ono Pharmaceutical Co., Ltd., Osaka, Japan for providing epalrestat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Saji.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00259-005-1865-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiyono, Y., Kajiyama, S., Fujiwara, H. et al. Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG. Eur J Nucl Med Mol Imaging 32, 438–442 (2005). https://doi.org/10.1007/s00259-004-1694-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1694-7

Keywords

Navigation