Skip to main content

Advertisement

Log in

Hyperpolarised 3He MRI and 81mKr SPECT in chronic obstructive pulmonary disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

During recent years, magnetic resonance imaging (MRI) using hyperpolarised (HP) 3He gas has emerged as a promising new method for the imaging of lung ventilation. However, systematic comparisons with nuclear medicine techniques have not yet been performed. The aim of this study was to compare ventilation imaging methods in 26 patients with chronic obstructive pulmonary disease (COPD) and nine lung healthy volunteers.

Methods

HP 3He MRI, 81mKr single-photon emission computed tomography (SPECT), high-resolution computed tomography (HRCT) and pulmonary function tests were performed. The three scans were scored visually as percentage of non-ventilated/diseased lung, and a computer-based objective measure of the ventilated volume in HP 3He MRI and 81mKr SPECT and an emphysema index in HRCT were calculated.

Results

We found a good correlation between HP 3He MRI and 81mKr SPECT for both visual defect score (r=0.80, p<0.0001) and objective estimate of ventilation (r=0.45, p=0.0157). In addition, both scans were well correlated with reference methods for the diagnosis of emphysema (pulmonary function test and HRCT). The defect scores were largest on 81mKr SPECT (the score on HP 3He MRI was one-third less than that on 81mKr SPECT), but the difference was reduced after normalisation for different breathing depths (HP 3He MRI at total lung capacity; 81mKr SPECT at tidal breathing at functional residual capacity).

Conclusion

HP 3He MRI provides detailed ventilation distribution images and defect scores are comparable on HP 3He MRI and 81mKr SPECT. Additionally, new insights into the regional pulmonary microstructure via the apparent diffusion coefficient measurements are provided by HP 3He MRI. HP 3He MRI is a promising new diagnostic tool for the assessment of ventilation distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kauczor HU, Chen XJ, van Beek EJ, Schreiber WG. Pulmonary ventilation imaged by magnetic resonance: at the doorstep of clinical application. Eur Respir J 2001;17:1008–23.

    Article  CAS  PubMed  Google Scholar 

  2. Kauczor HU, Eberle B. Elucidation of structure–function relationships in the lung: contributions from hyperpolarized 3helium MRI. Clin Physiol Funct Imaging 2002;22:361–9.

    Article  PubMed  Google Scholar 

  3. Albert MS, Cates GD, Driehuys B, Happer W, Saam B, Springer CS Jr, et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 1994;370:199–201.

    Article  CAS  PubMed  Google Scholar 

  4. de Lange EE, Mugler JP III, Brookeman JR, Knight-Scott J, Truwit JD, Teates CD, et al. Lung air spaces: MR imaging evaluation with hyperpolarized 3He gas. Radiology 1999;210:851–7.

    PubMed  Google Scholar 

  5. Peces-Barba G, Ruiz-Cabello J, Cremillieux Y, Rodriguez I, Dupuich D, Callot V, et al. Helium-3 MRI diffusion coefficient: correlation to morphometry in a model of mild emphysema. Eur Respir J 2003;22:14–9.

    Article  CAS  PubMed  Google Scholar 

  6. Salerno M, de Lange EE, Altes TA, Truwit JD, Brookeman JR, Mugler JP III. Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes—initial experience. Radiology 2002;222:252–60.

    PubMed  Google Scholar 

  7. Kauczor HU, Chen XJ, van Beek EJ, Schreiber WG. Pulmonary ventilation imaged by magnetic resonance: at the doorstep of clinical application. Eur Respir J 2001;17:1008–23.

    Article  CAS  PubMed  Google Scholar 

  8. Eberle B, Markstaller K, Schreiber WG, Kauczor HU. Hyperpolarised gases in magnetic resonance: a new tool for functional imaging of the lung. Swiss Med Wkly 2001;131:503–9.

    CAS  PubMed  Google Scholar 

  9. Bajc M, Bitzen U, Olsson B, Perez dS, V, Palmer J, Jonson B. Lung ventilation/perfusion SPECT in the artificially embolized pig. J Nucl Med 2002;43:640–7.

    PubMed  Google Scholar 

  10. Magnussen JS, Chicco P, Palmer AW, Bush V, Mackey DW, Storey G, et al. Single-photon emission tomography of a computerised model of pulmonary embolism. Eur J Nucl Med 1999;26:1430–8.

    Article  CAS  PubMed  Google Scholar 

  11. Meignan MA. Lung ventilation/perfusion SPECT: the right technique for hard times. J Nucl Med 2002;43:648–51.

    PubMed  Google Scholar 

  12. Palmer J, Bitzen U, Jonson B, Bajc M. Comprehensive ventilation/perfusion SPECT. J Nucl Med 2001;42:1288–94.

    CAS  PubMed  Google Scholar 

  13. Sando Y, Inoue T, Nagai R, Endo K. Ventilation/perfusion ratios and simultaneous dual-radionuclide single-photon emission tomography with krypton-81m and technetium-99m macroaggregated albumin. Eur J Nucl Med 1997;24:1237–44.

    Article  CAS  PubMed  Google Scholar 

  14. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J 1993 Suppl;16:5–40.

    CAS  Google Scholar 

  15. Bouchiat MA, Carver TR, Varnum CM. Nuclear polarization in He-3 gas induced by optical pumping and dipolar exchange. Phys Rev Lett 1960;5(8):373–5.

    Article  CAS  Google Scholar 

  16. Colegrove FD, Schearer LD, Walters GK. Polarization of He3 gas by optical pumping. Phys Rev 1963;132(6):2561.

    Article  CAS  Google Scholar 

  17. Otten EW. Take a breath of polarized noble gas. Europhys News 2004;35(1).

    Google Scholar 

  18. Wild JM, Schmiedeskamp J, Paley MN, Filbir F, Fichele S, Kasuboski L, et al. MR imaging of the lungs with hyperpolarized helium-3 gas transported by air. Phys Med Biol 2002;47:N185–190.

    Article  CAS  PubMed  Google Scholar 

  19. van Beek EJ, Schmiedeskamp J, Wild JM, Paley MN, Filbir F, Fichele S, et al. Hyperpolarized 3-helium MR imaging of the lungs: testing the concept of a central production facility. Eur Radiol 2003;13:2583–6.

    Article  PubMed  Google Scholar 

  20. Zaporozhan J, Ley S, Gast KK, Schmiedeskamp J, Biedermann A, Eberle B, et al. Functional analysis in single-lung transplant recipients: a comparative study of high-resolution CT, 3He-MRI, and pulmonary function tests. Chest 2004;125:173–81.

    Article  PubMed  Google Scholar 

  21. Gevenois PA, De Vuyst P, Sy M, Scillia P, Chaminade L, de Maertelaer V, et al. Pulmonary emphysema: quantitative CT during expiration. Radiology 1996;199:825–9.

    CAS  PubMed  Google Scholar 

  22. Gast KK, Viallon M, Eberle B, Lill J, Puderbach MU, Hanke AT, et al. MRI in lung transplant recipients using hyperpolarized 3He: comparison with CT. J Magn Reson Imaging 2002;15:268–74.

    Article  PubMed  Google Scholar 

  23. Kauczor HU. Hyperpolarized helium-3 gas magnetic resonance imaging of the lung. Top Magn Reson Imaging 2003;14:223–30.

    Article  PubMed  Google Scholar 

  24. Salerno M, Altes TA, Mugler JP III, Nakatsu M, Hatabu H, de Lange EE. Hyperpolarized noble gas MR imaging of the lung: potential clinical applications. Eur J Radiol 2001;40:33–44.

    Article  CAS  PubMed  Google Scholar 

  25. Lipson DA, Roberts DA, Hansen-Flaschen J, Gentile TR, Jones G, Thompson A, et al. Pulmonary ventilation and perfusion scanning using hyperpolarized helium-3 MRI and arterial spin tagging in healthy normal subjects and in pulmonary embolism and orthotopic lung transplant patients. Magn Reson Med 2002;47:1073–6.

    Article  PubMed  Google Scholar 

  26. Eustace S, Phelan N, Dowsett DJ, Ennis JT. A comparison of SPECT and planar ventilation perfusion lung scanning. Ir J Med Sci 1993;162:82–5.

    CAS  PubMed  Google Scholar 

  27. Corbus HF, Seitz JP, Larson RK, Stobbe DE, Wooten W, Sayre JW, et al. Diagnostic usefulness of lung SPET in pulmonary thromboembolism: an outcome study. Nucl Med Commun 1997;18:897–906.

    CAS  PubMed  Google Scholar 

  28. Morrell NW, Roberts CM, Jones BE, Nijran KS, Biggs T, Seed WA. The anatomy of radioisotope lung scanning. J Nucl Med 1992;33:676–83.

    CAS  PubMed  Google Scholar 

  29. Morrell NW, Nijran KS, Jones BE, Biggs T, Seed WA. The underestimation of segmental defect size in radionuclide lung scanning. J Nucl Med 1993;34:370–4.

    CAS  PubMed  Google Scholar 

  30. Jamadar DA, Kazerooni EA, Martinez FJ, Wahl RL. Semi-quantitative ventilation/perfusion scintigraphy and single-photon emission tomography for evaluation of lung volume reduction surgery candidates: description and prediction of clinical outcome. Eur J Nucl Med 1999;26:734–42.

    Article  CAS  PubMed  Google Scholar 

  31. Alderson PO, Line BR. Scintigraphic evaluation of regional pulmonary ventilation. Semin Nucl Med 1980;10:218–42.

    CAS  PubMed  Google Scholar 

  32. Fazio F, Jones T. Assessment of regional ventilation by continuous inhalation of radioactive krypton-81m. Br Med J 1975;3:673–6.

    CAS  PubMed  Google Scholar 

  33. Goris ML, Daspit SG, Walter JP, McRae J, Lamb J. Applications of ventilation lung imaging with 81mKrypton. Radiology 1977;122:399–403.

    CAS  PubMed  Google Scholar 

  34. Isawa T, Teshima T, Anazawa Y, Miki M, Soni PS. Technegas versus krypton-81m gas as an inhalation agent. Comparison of pulmonary distribution at total lung capacity. Clin Nucl Med 1994;19:1085–90.

    CAS  PubMed  Google Scholar 

  35. Worsley D, Gottschalk A. Nuclear medicine techniques and applications. In: Murray J, Nadel J, editors. Textbook of respiratory medicine. Philedelphia, PA: W.B. Saunders; 2000.

  36. Cunningham DA, Lavender JP. Krypton 81m ventilation scanning in chronic obstructive airways disease. Br J Radiol 1981;54:110–6.

    CAS  PubMed  Google Scholar 

  37. Lythgoe MF, Davies H, Kuba A, Toth-Abonyi M, Gordon I. Can dynamic krypton-81m imaging separate regional ventilation and volume? J Nucl Med 1992;33:1935–9.

    Google Scholar 

  38. Kauczor HU, Markstaller K, Puderbach M, Lill J, Eberle B, Hanisch G, et al. Volumetry of ventilated airspaces by 3He MRI: preliminary results. Invest Radiol 2001;36:110–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the fifth European Framework Programme (PHIL project: Polarised Helium to Image the Lung), the Danish Lung Association and the Research Fund of Copenhagen Hospital Corporation. We thank Eivind Frausing Hansen for his help in recruiting patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trine Stavngaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavngaard, T., Søgaard, L.V., Mortensen, J. et al. Hyperpolarised 3He MRI and 81mKr SPECT in chronic obstructive pulmonary disease. Eur J Nucl Med Mol Imaging 32, 448–457 (2005). https://doi.org/10.1007/s00259-004-1691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1691-x

Keywords

Navigation