Skip to main content

Advertisement

Log in

A 4-methyl-substituted meta-iodobenzylguanidine analogue with prolonged retention in human neuroblastoma cells

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

As a part of our efforts to develop a meta-iodobenzylguanidine (MIBG) analogue with improved characteristics for the diagnosis and treatment of neuroendocrine tumours, 3-[131I]iodo-4-methyl-benzylguanidine ([131I]MeIBG) has been developed. The purpose of this study was to evaluate [131I]MeIBG in vitro using the uptake-1 positive SK-N-SH neuroblastoma cell line and in vivo in normal mice and mice bearing human neuroblastoma xenografts.

Methods

The ability of SK-N-SH human neuroblastoma cells to retain [131I]MeIBG in vitro over a period of 4 days, in comparison to [125I]MIBG, was determined by a paired-label assay. Paired-label biodistributions of [131I]MeIBG and [125I]MIBG were performed in normal mice as well as in athymic mice bearing SK-N-SH and IMR-32 human neuroblastoma xenografts.

Results

Retention of [131I]MeIBG by SK-N-SH cells in vitro was increased by factors of 1.2, 1.5, 2.0, 2.5 and 3.1 compared with [125I]MIBG at 8, 24, 48, 72 and 96 h, respectively. In normal mice, the uptake of [131I]MeIBG in the heart was similar to that of [125I]MIBG at 1 and 4 h; in contrast, myocardial uptake of [131I]MeIBG was 1.6-fold higher than that of [125I]MIBG (p<0.05) at 24 h. When mice were pre-treated with the uptake-1 inhibitor desipramine (DMI), the heart uptake of both tracers was reduced to about half that in untreated controls at 1 h post injection (p<0.05). The hepatic uptake of [131I]MeIBG was two- to threefold lower than that of [125I]MIBG. On the other hand, blood levels of [131I]MeIBG were substantially higher (up to sixfold), especially at early time points. Uptake of [131I]MeIBG in heart and tumour at 1 h in the murine SK-N-SH model was specific and comparable to that of [125I]MIBG. However, [131I]MeIBG uptake was 1.6- to 1.7-fold lower than that of [125I]MIBG over 4–48 h. While the uptake of both tracers in IMR32 xenografts was similar, it was not uptake-1 mediated.

Conclusion

Introduction of a methyl group at the 4-position of MIBG seems to be advantageous in terms of higher tumour retention in vitro and lower hepatic uptake in vivo. However, the slower blood clearance of MeIBG may be problematic for some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Patel AD, Iskandrian AE. MIBG imaging. J Nucl Cardiol 2002;9:75–94

    Article  PubMed  Google Scholar 

  2. Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart: what have we learnt clinically? Eur J Nucl Med 2000;27:1–6

    CAS  PubMed  Google Scholar 

  3. Sisson JC, Shulkin BL. Nuclear medicine imaging of pheochromocytoma and neuroblastoma. Q J Nucl Med 1999;43:217–23

    Google Scholar 

  4. Tang HR, Da Silva AJ, Matthay KK, Price DC, Huberty JP, Hawkins RA, Hasegawa BH. Neuroblastoma imaging using a combined CT scanner-scintillation camera and 131I-MIBG. J Nucl Med 2001;42:237–47

    Google Scholar 

  5. Tepmongkol S, Heyman S. 131I MIBG therapy in neuroblastoma: mechanisms, rationale, and current status. Med Pediatr Oncol 1999;32:427–31

    Article  CAS  PubMed  Google Scholar 

  6. Mukherjee JJ, Kaltsas GA, Islam N, Plowman PN, Foley R, Hikmat J, Britton KE, Jenkins PJ, Chew SL, Monson JP, Besser GM, Grossman AB. Treatment of metastatic carcinoid tumours, phaeochromocytoma, paraganglioma and medullary carcinoma of the thyroid with 131I-meta-iodobenzylguanidine (131I-mIBG). Clin Endocrinol 2001;55:47–60

    Article  CAS  Google Scholar 

  7. Matthay KK, DeSantes K, Hasegawa B, Huberty J, Hattner RS, Ablin A, Reynolds CP, Seeger RC, Weinberg VK, Price D. Phase I dose escalation of 131I-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol 1998;16:229–36

    CAS  PubMed  Google Scholar 

  8. Yanik GA, Levine JE, Matthay KK, Yanik GA, Levine JE, Matthay KK, Sisson JC, Shulkin BL, Shapiro B, Hubers D, Spalding S, Braun T, Ferrara JLM, Hutchinson RJ. Pilot study of iodine-131-metaiodobenzylguanidine in combination with myeloablative chemotherapy and autologous stem-cell support for the treatment of neuroblastoma. J Clin Oncol 2002;20:2142–9

    Article  CAS  PubMed  Google Scholar 

  9. Vaidyanathan G, Shankar S, Affleck DJ, Welsh PC, Slade SK, Zalutsky MR. Biological evaluation of ring- and side-chain-substituted m-iodobenzylguanidine analogues. Bioconjug Chem 2001;12:798–806

    Article  CAS  PubMed  Google Scholar 

  10. Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4-[fluorine-18]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med 1995;36:644–50

    CAS  PubMed  Google Scholar 

  11. Wieland DM. Radiopharmaceutical design: the adrenal medulla and its diseases. In: Fritzberg AR, ed. Radiopharmaceuticals: progress and clinical perspectives, vol 1. Boca Raton: CRC; 1986:117–53

  12. Sircar I, Duell BL, Bobowski G, Bristol JA, Evans DB. Cardiotonic agents. 2. Synthesis and structure-activity relationships of 4,5-dihydro-6-[4-(1H-imidazol-1-yl)phenyl]-3(2H)-pyridazinones: a new class of positive inotropic agents. J Med Chem 1985;28:1405–13

    CAS  PubMed  Google Scholar 

  13. Block MH, Boyer S, Brailsford W, Brittain DR, Carroll D, Chapman S, Clarke DS, Donald CS, Foote KM, Godfrey L, Ladner A, Marsham PR, Masters DJ, Mee CD, O’Donovan MR, Pease JE, Pickup AG, Rayner JW, Roberts A, Schofield P, Suleman A, Turnbull AV. Discovery and optimization of a series of carbazole ureas as NPY5 antagonists for the treatment of obesity. J Med Chem 2002;45:3509–23

    Article  CAS  PubMed  Google Scholar 

  14. Vaidyanathan G, Shankar S, Affleck DJ, Alston K, Norman J, Welsh P, LeGrand H, Zalutsky MR. Meta-iodobenzylguanidine derivatives containing a second guanidine moiety. Bioorg Med Chem 2004;12:1649–56

    Article  PubMed  Google Scholar 

  15. Jaques S Jr, Tobes MC, Sisson JC, Baker JA, Wieland DM. Comparison of the sodium dependency of uptake of meta-iodobenzylguanidine and norepinephrine into cultured bovine adrenomedullary cells. Mol Pharmacol 1984;26:539–46

    CAS  PubMed  Google Scholar 

  16. Smets LA, Loesberg C, Janssen M, Metwally EA, Huiskamp R. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res 1989;49:2941–4

    CAS  PubMed  Google Scholar 

  17. Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med 1980;21:349–53

    CAS  PubMed  Google Scholar 

  18. Vaidyanathan G, Zalutsky MR. No-carrier-added synthesis of meta-[131I]iodobenzylguanidine. Appl Radiat Isot 1993;44:621–8

    Article  CAS  PubMed  Google Scholar 

  19. Biedler JN, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 1973;33:2643–52

    CAS  PubMed  Google Scholar 

  20. Kaltenbach JP, Kaltenbach MH, Lyons WB. Nigrosin as a dye for differentiating live and dead ascites cells. Exp Cell Res 1958;15:112–7

    CAS  PubMed  Google Scholar 

  21. Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4-[fluorine-18]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med 1995;36:644–50

    CAS  PubMed  Google Scholar 

  22. Lee H, Inbasekaran MN, Wieland DM, Sherman PS, Fisher SJ, Mangner TJ, Rogers WL, Clinthorne NH. Development of a kit-form analog of metaiodobenzylguanidine. J Nucl Med 1986;27:256–67

    CAS  PubMed  Google Scholar 

  23. Mairs RJ, Gaze MN, Barrett A. The uptake and retention of metaiodobenzylguanidine by the neuroblastoma cell line NB1-G. Br J Cancer 1991;64:293–5

    CAS  PubMed  Google Scholar 

  24. Vaidyanathan G, Zhao X-G, Strickland DK, Zalutsky MR. No-carrier-added iodine-131-FIBG: evaluation of an MIBG analog. J Nucl Med 1997;38:330–4

    CAS  PubMed  Google Scholar 

  25. Kelley SP, Grota LJ, Felten SY, Madden KS, Felten DL. Norepinephrine in mouse spleen shows minor strain differences and no diurnal variation. Pharmacol Biochem Behav 1996;53:141–6

    Article  CAS  PubMed  Google Scholar 

  26. Cano G, Sved AF, Rinaman L, Rabin BS, Card JP. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol 2001;439:1–18

    Article  CAS  PubMed  Google Scholar 

  27. Rutgers M, Tytgat GAM, Verwijs-Janssen M, Buitenhusis C, Voute PA, Smets LA. Uptake of the neuron-blocking agent meta-iodobenzylguanidine and serotonin by human platelets and neuro-adrenergic tumor cells. Int J Cancer 1993;54:290–5

    CAS  PubMed  Google Scholar 

  28. Glowniak JV, Kilty JE, Amara SG, Hoffman BJ, Turner FE. Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters. J Nucl Med 1993;34:1140–6

    CAS  PubMed  Google Scholar 

  29. Feldman JM, Frankel N, Coleman RE. Platelet uptake of the pheochromocytoma-scanning agent 131I-meta-iodobenzylguanidine. Metabolism 1984;33:397–9

    Article  CAS  PubMed  Google Scholar 

  30. Rutgers M, Gubbels AAT, Hoefnagel CA, Voute PA, Smets LA. A human neuroblastoma xenograft model for [131I]-meta-iodobenzylguanidine (MIBG) biodistribution and targeted radiotherapy. Prog Clin Biol Res 1991;366:471–8

    CAS  PubMed  Google Scholar 

  31. Khanna C, Jaboin JJ, Drakos E, Tsokos M, Thiele CJ. Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis. In Vivo 2002;16:77–86

    PubMed  Google Scholar 

  32. Buck J, Bruchelt G, Girgert R, Treuner J, Niethammer D. Specific uptake of m-[125I]iodobenzylguanidine in the human neuroblastoma cell line SK-N-SH. Cancer Res 1995;45:6366–70

    Google Scholar 

  33. Armour A, Mairs RJ, Gaze MN, Wheldon TE. Modification of meta-iodobenzylguanidine uptake in neuroblastoma cells by elevated temperature. Br J Cancer 1994;70:445–8

    CAS  PubMed  Google Scholar 

  34. Montaldo PG, Raffaghello L, Guarnaccia F, Pistoia V, Garaventa A, Ponzoni M. Increase of metaiodobenzylguanidine uptake and intracellular half-life during differentiation of human neuroblastoma cells. Int J Cancer 1996;67:95–100

    Article  CAS  PubMed  Google Scholar 

  35. Driscoll TA, Flowers JL, Colvin OM. Potentiation of camptothecin-based antineuroblastoma activity by selective tumor acidification [abstract]. Proc Am Assoc Cancer Res 2002; Abstract 2888

  36. Vaidyanathan G, Friedman HS, Keir ST, Zalutsky MR. Localisation of [131I]MIBG in nude mice bearing SK-N-SH human neuroblastoma xenografts: effects of specific activity. Br J Cancer 1996;73:1171–7

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants CA78417, CA93371, CA91927 and CA42324 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Vaidyanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaidyanathan, G., Welsh, P.C., Vitorello, K.C. et al. A 4-methyl-substituted meta-iodobenzylguanidine analogue with prolonged retention in human neuroblastoma cells. Eur J Nucl Med Mol Imaging 31, 1362–1370 (2004). https://doi.org/10.1007/s00259-004-1596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1596-8

Keywords

Navigation