Skip to main content

Advertisement

Log in

Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine

  • Molecular Imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Imaging of amino acid transport in brain tumours is more sensitive than fluorine-18 2-fluoro-deoxyglucose positron emission tomography (PET). The most frequently used tracer in this field is carbon-11 methionine (MET), which is unavailable for PET centres without a cyclotron because of its short half-life. The purpose of this study was to evaluate the performance of 3,4-dihydroxy-6-[18F]fluoro-phenylalanine (FDOPA) in this setting, in comparison with MET. Twenty patients with known supratentorial brain lesions were referred for PET scans with FDOPA and MET. The diagnoses were 18 primary brain tumours, one metastasis and one non-neoplastic cerebral lesion. All 20 patients underwent PET with FDOPA (100 MBq, 20 min p.i.), and 19 of them also had PET scans with MET (800 MBq, 20 min p.i.). In all but one patient a histological diagnosis was available. In 15 subjects, histology was known from previous surgical interventions; in five of these patients, as well as in four previously untreated patients, histology was obtained after PET. In one untreated patient, confirmation of PET was possible solely by correlation with MRI; a histological diagnosis became available 10 months later. MET and FDOPA images matched in all patients and showed all lesions as hot spots with higher uptake than in the contralateral brain. Standardised uptake value ratios, tumour/contralateral side (mean±SD), were 2.05±0.91 for MET and 2.04±0.53 for FDOPA (NS). The benign lesion, which biopsy revealed to be a focal demyelination, was false positive, showing increased uptake of MET and FDOPA. We conclude that FDOPA is accurate as a surrogate for MET in imaging amino acid transport in malignant cerebral lesions for the purpose of visualisation of vital tumour tissue. It combines the good physical properties of 18F with the pharmacological properties of MET and might therefore be a valuable PET radiopharmaceutical in brain tumour imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2A, B.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Hoh CK, Schiepers C, Seltzer MA, et al. PET in oncology: will it replace the other modalities? Semin Nucl Med 1997; 27:94–106.

    CAS  PubMed  Google Scholar 

  2. Delbeke D. Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J Nucl Med 1999; 40:591–603.

    CAS  PubMed  Google Scholar 

  3. Delbeke D. Oncological applications of FDG PET imaging. J Nucl Med 1999; 40:1706–1715.

    CAS  PubMed  Google Scholar 

  4. Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography. Neurology 1982; 32:1323–1329.

    PubMed  Google Scholar 

  5. Di Chiro G, Brooks RA, Patronas NJ, et al. Issues in the in vivo measurement of glucose metabolism of human central nervous system tumors. Ann Neurol 1984; 15:S138–S146.

    PubMed  Google Scholar 

  6. Derlon JM, Bourdet C, Bustany P, et al. [11C]l-methionine uptake in gliomas. Neurosurgery 1989; 25:720–728.

    CAS  PubMed  Google Scholar 

  7. De Witte O, Goldberg I, Wikler D, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 2001; 95:746–750.

    PubMed  Google Scholar 

  8. Ericson K, Lilja A, Bergstrom M, et al. Positron emission tomography with ([11C]methyl)-l-methionine, [11C]d-glucose, and [68Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr 1985; 9:683–689.

    Google Scholar 

  9. Bustany P, Chatel M, Derlon JM, et al. Brain tumor protein synthesis and histological grades: a study by positron emission tomography (PET) with C11-l-methionine. J Neurooncol 1986; 3:397–404.

    CAS  PubMed  Google Scholar 

  10. Bergstrom M, Collins VP, Ehrin E, et al. Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 1983; 7:1062–1066.

    Google Scholar 

  11. Lilja A, Bergstrom K, Hartvig P, et al. Dynamic study of supratentorial gliomas withl-methyl-11C-methionine and positron emission tomography. AJNR Am J Neuroradiol 1985; 6:505–514.

    CAS  PubMed  Google Scholar 

  12. Ogawa T, Shishido F, Kanno I, et al. Cerebral glioma: evaluation with methionine PET. Radiology 1993; 186:45–53.

    CAS  PubMed  Google Scholar 

  13. Wester HJ, Herz M, Weber W, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-l-tyrosine for tumor imaging. J Nucl Med 1999; 40:205–212.

    CAS  PubMed  Google Scholar 

  14. Weber WA, Wester HJ, Grosu AL, et al. O-(2-[18F]fluoroethyl)-l-tyrosine and l-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000; 27:542–549.

    CAS  PubMed  Google Scholar 

  15. Garnett ES, Firnau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature 1983; 305:137–138.

    CAS  PubMed  Google Scholar 

  16. Nahmias C, Garnett ES, Firnau G, Lang A. Striatal dopamine distribution in parkinsonian patients during life. J Neurol Sci 1985; 69:223–230.

    CAS  PubMed  Google Scholar 

  17. Leenders KL, Frackowiak RS, Lees AJ. Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography. Brain 1988; 111:615–630.

    PubMed  Google Scholar 

  18. Gupta N, Bradfield H. Role of positron emission tomography scanning in evaluating gastrointestinal neoplasms. Semin Nucl Med 1996; 26:65–73.

    CAS  PubMed  Google Scholar 

  19. Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E.18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 2001; 28:64–71.

    Google Scholar 

  20. Hoegerle S, Altehoefer C, Ghanem N, et al. Whole-body18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 2001; 220:373–380.

    CAS  PubMed  Google Scholar 

  21. Heiss WD, Wienhard K, Wagner R, et al. F-Dopa as an amino acid tracer to detect brain tumors. J Nucl Med 1996; 37:1180–1182.

    CAS  PubMed  Google Scholar 

  22. Schmitz F, Plenevaux A, Del Fiore G, Lemaire C, Comar D, Luxen A. Fast routine production of l-[11C-methyl]methionine with Al2=3/KF. Appl Radiat Isot 1995; 46:893–897.

    Article  CAS  Google Scholar 

  23. de Vries EFJ, Luurtsema G, Bruessermann M, Elsinga PH, Vaalburg W. Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]fluoro-l-DOPA. Appl Radiat Isot. 1999; 51:389–349.

    Google Scholar 

  24. Oldendorf WH, Szabo J. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol 1976; 230:94–98.

    PubMed  Google Scholar 

  25. O'Tuama LA, Guilarte TR, Douglass KH, et al. Assessment of [11C]-l-methionine transport into the human brain. J Cereb Blood Flow Metab 1988; 8:341–345.

    Google Scholar 

  26. Kaschten B, Stevenaert A, Sadzot B, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998; 39:778–785.

    CAS  PubMed  Google Scholar 

  27. Bader JB, Samnick S, Moringlane JR, et al. Evaluation of l-3-[123I]iodo-alpha-methyltyrosine SPET and [18F]fluorodeoxyglucose PET in the detection and grading of recurrences in patients pretreated for gliomas at follow-up: a comparative study with stereotactic biopsy. Eur J Nucl Med 1999; 26:144–151.

    CAS  PubMed  Google Scholar 

  28. Goldman S, Levivier M, Pirotte B, et al. Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 1997; 38:1459–1462.

    CAS  PubMed  Google Scholar 

  29. Voges J, Herholz K, Holzer T, et al.11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds. Stereotact Funct Neurosurg 1997; 69:129–135.

    CAS  PubMed  Google Scholar 

  30. Herholz K, Holzer T, Bauer B, et al.11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998; 50:1316–1322.

    CAS  PubMed  Google Scholar 

  31. Roelcke U, Radu E, Ametamey S, Pellikka R, Steinbrich W, Leenders KL. Association of rubidium and C-methionine uptake in brain tumors measured by positron emission tomography. J Neurooncol 1996; 27:163–171.

    CAS  PubMed  Google Scholar 

  32. Nakagawa M, Kuwabara Y, Sasaki M, et al.11C-methionine uptake in cerebrovascular disease: a comparison with 18F-fDG PET and 99mTc-HMPAO SPECT. Ann Nucl Med 2002; 16:207–211.

    CAS  PubMed  Google Scholar 

  33. Becherer A, Szabó M, Asenbaum S, Marosi C, Angelberger P, Kletter K.18F-DOPA as a surrogate for 11C-methionine in non-invasive diagnosis of brain tumours [abstract]. Eur J Nucl Med 2002; 29:S7.

    Google Scholar 

  34. Fuchtner F, Angelberger P, Kvaternik H, Hammerschmidt F, Simovc BP, Steinbach J. Aspects of 6-[18F]fluoro-l-DOPA preparation: precursor synthesis, preparative HPLC purification and determination of radiochemical purity. Nucl Med Biol 2002; 29:477–481.

    Article  CAS  PubMed  Google Scholar 

  35. Eriksson B, Bergstrom M, Orlefors H, Sundin A, Oberg K, Langstrom B. Use of PET in neuroendocrine tumors. In vivo applications and in vitro studies. Q J Nucl Med 2000; 44:68–76.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by Lord Mayor of Vienna grant 1863/00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Becherer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becherer, A., Karanikas, G., Szabó, M. et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30, 1561–1567 (2003). https://doi.org/10.1007/s00259-003-1259-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1259-1

Keywords

Navigation