Skip to main content
Log in

Assessment of response to therapy using conventional imaging

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The response of lymphoma to treatment is usually documented using cross-sectional imaging. The definitions of response and the changes seen on CT and MRI in the chest and abdomen are well recognised. However, the appearances of residual masses are more variable and features that may help in diagnosis will be included in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Miller A, Hoogstraten B, Staquet M, et al. Reporting results of cancer treatment. Cancer 1981; 47:207.

    Google Scholar 

  2. Dixon DO, McLaughlin P, Hagemeister FB, et al. Reporting outcomes in Hodgkin's disease and lymphoma. J Clin Oncol 1987; 5:2773–2778.

    Google Scholar 

  3. Lister TA, Crowther D, Sutcliffe SB, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin's disease: Cotswolds meeting. J Clin Oncol 1989; 7:1630–1636.

    Google Scholar 

  4. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. J Clin Oncol 1999; 17:1244–1253.

    Google Scholar 

  5. Grillo-Lopez AJ, Cheson B, Horning S. Response criteria (RC) for NHL: importance of "normal" lymph node (LN) size and correlations with response. Blood 1998; 92:41 2a (abs 1701). Suppl 1.

    Google Scholar 

  6. Mack MG, Balzer JO, Straub R, Eichler K, Vogl TJ. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 2002; 1:239–244.

    Google Scholar 

  7. Bussar Maatz R, Weissbach L. Retroperitoneal lymph node staging in testicular tumours. TNM study group. Br J Urol 1993; 72:234–240.

    Google Scholar 

  8. Tio TL, Kallimaris GE. Endosonographic ultrasounography of perigastric intestinal lymph nodes. Endoscopy 1994; 26:776–779.

    Google Scholar 

  9. Sakaguchi T, Yamashita Y, Katahira K, et al. Differential diagnosis of small round cervical lymph nodes: comparison of power Doppler US with contrast-enhanced CT and pathologic results. Radiat Med 2001; 19:119–125.

    Google Scholar 

  10. Surbone A, Lango DL, deVitra VT, et al. Residual abdominal masses in aggressive non-Hodgkin's lymphoma after combination chemotherapy: significance and management. J Clin Oncol 1988; 6:1832–1837.

    Google Scholar 

  11. Lewis E, Bernardino ME, Salvador PG, Cabanillas FF, Barnes PA, Thomas JL. Post therapy CT detected mass in lymphoma patients: is it viable tissue? J Comput Assist Tomogr 1982; 6:792–795.

    Google Scholar 

  12. Husband JE. Diagnostic techniques: their strength and weaknesses. Br J Cancer 1980 (Suppl 1 V) 41:21.

    Google Scholar 

  13. Hopper KD, Kasales CJ, van Slyke MA, Schwartz TA, Tenhave TR, Jozefiak JA. Analysis of interobserver and intraobserver variability in CT tumor measurements. AJR Am J Roentgenol 1996; 167:851–854.

    Google Scholar 

  14. Apter S, Avigdor A, Gayer G, Portnoy O, Zissin R, Hertz M. Calcification in lymphoma occurring before therapy: CT features and clinical correlation. AJR Am J Roentgenology 2002; 178:935–938.

    Google Scholar 

  15. Dugdale PE, Miles KA, Bunce I, Kelley BB, Leggatt DA. CT measurement of perfusion and permeability within lymphoma masses and its ability to assess grade, activity, and chemotherapeutic response. J Comput Assist Tomogr 1999; 23:540–547.

    Article  CAS  PubMed  Google Scholar 

  16. Boiselle PM, Patz EJ, Vining DJ, Weissler R, Sheard JO, McLoud TC. Imaging of mediastinal lymph nodes. CT, MR and FDG-PET. Radiographics 1998; 18:1061–1069.

    Google Scholar 

  17. Glazer HS, Lee JKT, Levitt RG, et al. Radiation fibrosis: differentiation from recurrent tumor by MR imaging. Radiology 1985; 156:721–726.

    Google Scholar 

  18. Hill M, Cunningham D, MacVicar D, et al. Role of magnetic resonance imaging in predicting relapse in residual masses after treatment of lymphoma. J Clin Oncol 1993; 11:2773–2778.

    Google Scholar 

  19. Nyman RS, Rehn SM, Glimelius BL, Hagberg HE, Hemmingsson AL, Sundstrom CJ. Residual mediastinal masses in Hodgkin disease: prediction of size with MR imaging. Radiology 1989; 170:435–440.

    Google Scholar 

  20. Altehoefer C, Blum U, Bathmann J, Wustenberg C, Uhrmeister P, Laubenberger J. Comparative diagnostic accuracy of magnetic resonance imaging and immunoscintigraphy for detection of bone marrow involvement in patients with malignant lymphoma. J Clin Oncol 1997; 15:1754–1760.

    Google Scholar 

  21. Radford JA, Cowan RA, Flanagan M, et al. The significance of residual mediastinal abnormality on the chest radiograph following treatment for Hodgkin's disease. J Clin Oncol 1988; 6:940–946.

    Google Scholar 

  22. Rahmouni A, Tempany C, Jones R, Mann R, Yang A, Zerhouni E. Lymphoma. Monitoring tumor size and signal intensity with MR imaging. Radiology 1993; 188:445–451.

  23. Jochelson M, Mauch P, Balikian J, Rosenthal D, Canellos G. The significance of the residual mediastinal mass in treated Hodgkin disease. J Clin Oncol 1985; 3:637–640.

    Google Scholar 

  24. Fuks JZ, Aisner J, Wiernik PH. Restaging laparotomy in the management of the non-Hodgkin lymphomas. Med Pediatr Oncol 1982; 10:429–438.

    Google Scholar 

  25. Wernecke K, Vassallo P, Rutsch F, Peters P, Potter R. Thymic involvement in Hodgkin disease: CT and sonographic findings. Radiology 1991; 181:375–383.

    Google Scholar 

  26. Stewart FM, Williamson BR, Innes DJ, Hess CE. Residual tumor masses following treatment for advanced histiocytic lymphoma—diagnostic and therapeutic implications. Cancer 1985; 55:620–623.

    Google Scholar 

  27. North LB, Fuller LM, Sullivan Halley JA, et al. Regression of mediastinal Hodgkin disease after therapy: evaluation of time interval. Radiology 1987; 164:599–602.

    Google Scholar 

  28. Rodriguez-Catarino M, Jerkeman M, Ahlstrom H, Glimelius B, Hagberg H. Residual mass in aggressive lymphoma—does size, measured by computed tomography, influence clinical outcome? Acta Oncol 2000; 39:485–489.

    Google Scholar 

  29. Brisse H. Pacquement H. Burdairon E. Plancher C. Neuenschwander S. Outcome of residual mediastinal masses of thoracic lymphomas in children: impact on management and radiological follow-up strategy. Pediatr Radiol 1988; 28:444–450.

    Google Scholar 

  30. Lee CKK, Bloomfield CD, Goldman AI, Levitt SH. Prognostic significance of mediastinal involvement in Hodgkin disease treated with curative radiotherapy. Cancer 1980; 46:2403–2409.

    Google Scholar 

  31. Brink I, Reinhardt MJ, Hoegerle S, Altehoefer C, Moser E, Nitzsche EU. Increased metabolic activity in the thymus gland studied with18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med 2001; 42:591–595.

    Google Scholar 

  32. Luber GD, Siegel MJ. Mediastinal Hodgkin disease in children: response to therapy. Radiology 1993; 189:737–740.

    Google Scholar 

  33. Parker BR. Leukaemia and lymphoma in childhood. Radiol Clin North Am 1997; 35:1495–1516.

    Google Scholar 

  34. Kissin CM, Husband JE, Nicholas D, Eversman W. Benign thymic enlargement in adults after chemotherapy. CT demonstration. Radiology 1987; 163:67–70.

    Google Scholar 

  35. Heron CW, Husband JE, Williams MP. Hodgkin disease: CT of the thymus. Radiology 1998; 209:471–475.

    Google Scholar 

  36. Spiers ASD, Husband JES, MacVicar AD. Treated thymic lymphoma: comparison of MR imaging with CT. Radiology 1997; 203:369–376.

    Google Scholar 

  37. Maisey NR, Hill ME, Webb A, et al. Are 18 fluorodeoxyglucose positron emission tomography and magnetic resonance imaging useful in the prediction of relapse in lymphoma residual masses? Eur J Cancer 2000; 36:200–206.

    Google Scholar 

  38. Gossot D, Girard P, de Kerviler E, et al. Thoracoscopy or CT-guided biopsy for residual intrathoracic masses after treatment of lymphoma. Chest 2001; 120:289–294.

    Google Scholar 

  39. Coiffer B, Gisselbrecht C, Herbrecht R, et al. LNH-84 regimen. A multicentre study of intensive chemotherapy in 737 patients with aggressive malignant lymphoma. J Clin Oncol 1989; 7:1018–1026.

    Google Scholar 

  40. Karmazyn B, Ash S, Goshen Y, Yaniv I, Horev G, Kornreich L. Significance of residual abdominal masses in children with abdominal Burkitt's lymphoma. Pediatr Radiol 2001; 31:801–805.

    Google Scholar 

  41. Pappa VI, Hussain HK, Reznek RH, et al. Role of image guided core needle biopsy in the management of patients with lymphoma. J Clin Oncol 1996; 14:2427–2430.

    Google Scholar 

  42. Rahmouni A, Divine M, Lepage E, et al. Mediastinal lymphoma: quantitative changes in gadolinium enhancement at MR imaging after treatment. Radiology 2001; 219:621–628.

    Google Scholar 

  43. Jerusalem G, Beguin Y, Fassotte MF, et al. Whole-body positron emission tomography using18F-fluorodeoxyglucose for post treatment evaluation in Hodgkin's disease and non-Hodgkin's lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 1999; 94:429–433.

    Google Scholar 

  44. Rodriquez M. Computed tomography, magnetic resonance imaging and positron emission tomography in non-Hodgkin's lymphoma. Acta Radiol 1998; 39 (Suppl):417.

    Google Scholar 

  45. Rehn S, Nyman R, Glimelins Bhagberg HE, et al. Non-Hodgkin lymphoma: predicting prognostic grade with MR imaging. Radiology 1990; 176:249–253.

    Google Scholar 

  46. Weeks JC, Yeap BY, Canellos G, Shipp MA. Value of follow-up procedures in patients with large-cell lymphoma who achieve a complete remission. J Clin Oncol 1991; 9:1196–1203.

    Google Scholar 

  47. Front D, Ben-Haim S, Israel O, et al. Lymphoma: predictive value of Ga-67 scintigraphy after treatment. Radiology 1992; 182:359–363.

    Google Scholar 

  48. Romer W, Hanauske AR, Ziegler S, et al. Positron emission tomography in non-Hodgkin's lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998; 91:4464–4471.

    Google Scholar 

  49. Chang PJ, Parker BR, Donaldson SS, Thompson EI. Dynamic probabilistic model for determination of optimal timing for surveillance chest radiography in pediatric Hodgkin disease. Radiology 1989; 173:71–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila C. Rankin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rankin, S.C. Assessment of response to therapy using conventional imaging. Eur J Nucl Med Mol Imaging 30 (Suppl 1), S56–S64 (2003). https://doi.org/10.1007/s00259-003-1162-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1162-9

Keywords

Navigation