Zeitschrift für Physik B Condensed Matter

, Volume 99, Issue 2, pp 269–280 | Cite as

Flow equations for the spin-boson problem

  • Stefan K. Kehrein
  • Andreas Mielke
  • Peter Neu
Original Contributions

Abstract

Using continuous unitary transformations recently introduced by Wegner [1], we obtain flow equations for the parameters of the spin-boson Hamiltonian. Interactions not contained in the original Hamiltonian are generated by this unitary transformation. Within an approximation that neglects additional interactions quadratic in the bath operators, we can close the flow equations. Applying this formalism to the case of Ohmic dissipation at zero temperature, we calculate the renormalized tunneling frequency. We find a transition from an untrapped to trapped state at the critical coupling constant αc=1. We also obtain the static susceptibility via the equilibrium spin correlation function. Our results are both consistent with results known from the Kondo problem and those obtained from mode-coupling theories. Using this formalism at finite temperature, we find a transition from coherent to incoherent tunneling atT2*≈2T1*, whereT1* is the crossover temperature of the dynamics known from the NIBA.

PACS

71.10+X 05.30.Jp 71.38.+ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wegner, F.: Ann. Physik Leipzig3, 77 (1994)CrossRefGoogle Scholar
  2. 2.
    Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Grag, A., Zwerger, W.: Rev. Mod. Phys.59, 1 (1987)CrossRefGoogle Scholar
  3. 3.
    Weiss, U., Grabert, H., Linkwitz, S.: J. Low. Temp. Phys.68, 213 (1987)CrossRefGoogle Scholar
  4. 4.
    Weiss, U.: Quantum dissipative dynamics. Series in Modern Condensed Matter Physics, vol. 2. Singapore: World Scientific 1993CrossRefGoogle Scholar
  5. 5.
    Bray, A.J., Moore, N.A.: Physik Rev. Lett.49, 1545 (1982)CrossRefGoogle Scholar
  6. 6.
    Chakravarty, S.: Phys. Rev. Lett.49, 681 (1982)CrossRefGoogle Scholar
  7. 7.
    Spohn, H., Dümcke, R.: J. Stat. Phys.41, 389 (1985)CrossRefGoogle Scholar
  8. 8.
    Calderia, A.O., Leggett, A.J.: Ann. Phys. (N.Y.)149, 374 (1983);153, 445 (1983); Phys. Rev. Lett.46, 211 (1981)CrossRefGoogle Scholar
  9. 9.
    Silbey, R., Harris, R.A.: J. Chem. Phys.80, 2615 (1983); J. Phys. Chem.93, 7062 (1989)CrossRefGoogle Scholar
  10. 10.
    Gross, E.P.: J. Stat. Phys.54, 405 (1989); ibid. J. Stat. Phys.54, 429 (1989),54, 437 (1989)CrossRefGoogle Scholar
  11. 11.
    Vitali, D., Bonci, L., Mannella, R., Grigolini, P.: Phys. Rev. A45, 2285 (1992)CrossRefGoogle Scholar
  12. 12.
    Čhápek V., Chvosta, P.: Phys. Rev. A43, 2819 (1991)CrossRefGoogle Scholar
  13. 13.
    Kehrein, S.K., Mielke, A.: J. Phys. A: Math. Gen.27, 4259 (1994); corrigendum27, 5705 (1994)CrossRefGoogle Scholar
  14. 14.
    Sassetti M, Weiss, U.: Phys. Rev. Lett.65, 2262 (1990); Phys. Rev. A41, 5383 (1990)CrossRefGoogle Scholar
  15. 15.
    Beck, R., Götze, W., Prelovsek, P.: Phys. Rev. A20, 1140 (1979)CrossRefGoogle Scholar
  16. 16.
    Zwerger, W.: Z. Phys. B53, 53 (1983); ibid Z. Phys.54, 87 (1983)CrossRefGoogle Scholar
  17. 17.
    Götze, W., Vujicic, G.M.: Phys. Rev. B38, 9398 (1988)CrossRefGoogle Scholar
  18. 18.
    Steinbinder, D., Wipf, H., Magerl, A., Richter, D., Dianoux, A.J., Neumaier, K.: Europhys. Lett.6, 535 (1988); Wipf, H. Steinbinder, D., Neumaier, K., Gutsmiedl, P., Magerl, A., Dianoux, A.J., ibid. Europhys. Lett.4, 1379 (1989)CrossRefGoogle Scholar
  19. 19.
    Aslangul, C., Pottier, N., Saint-James, D.: J. Physique47, 1657 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Stefan K. Kehrein
    • 1
  • Andreas Mielke
    • 1
  • Peter Neu
    • 1
  1. 1.Institut für Theoretische PhysikRuprecht-Karls-UniversitätHeidelbergGermany

Personalised recommendations