Skip to main content
Log in

Measurement of tibial slope using biplanar stereoradiography (EOS®)

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objectives

Posterior tibial slope (PTS) is an important anatomic parameter of the knee related to anteroposterior instability. Biplanar stereoradiography allows for simultaneous low-dose acquisition of anteroposterior and lateral views with 3D capability, enabling separate lateral and medial plateau analyses. We aimed to evaluate the possibility and compare the reproducibility of measuring medial and lateral PTS on EOS® images with two different patient positionings and compare it with CT of the knees as the gold standard.

Methods

This is a retrospective study including volunteers who underwent lower limb stereoradiography and knee CT from 01/08/2016 to 07/31/2019. Sixty legs from 30 patients were studied. PTS were measured using stereoradiography and CT by two radiologists. Intraclass correlation was used to calculate intrarater and interrater reproducibilities. Pearson’s correlation coefficients were used to calculate the correlation between stereoradiography and CT. We also compared the reproducibility of the stereoradiography of volunteers with 2 different positionings.

Results

The mean stereoradiography PTS values for right and left knees were as follows: lateral, 12.2° (SD: 4.1) and 10.1° (SD: 3.5); medial,12.2° (SD: 4.4) and 11.6° (SD: 3.9). CT PTS mean values for right and left knee are as follows: lateral, 10.3° (SD:2.5) and 10.6° (SD: 2.8); medial: 8.7° (SD: 3.7) and 10.4° (SD: 3.5). Agreement between CT and EOS for angles between lateral and medial PTS was good (right, 0.874; left, 0.871). Regarding patient positioning on stereoradiography, interrater and intrarater reproducibilities were greater for patients with nonparallel feet (0.738–0.883 and 0.870–0.975).

Conclusions

Stereoradiography allows for appropriate delineation of tibial plateaus, especially in patients with nonparallel feet, for the purpose of measuring PTS. The main advantage is lower radiation doses compared to radiography and CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Graph 1
Graph 2
Fig. 4

Similar content being viewed by others

Abbreviations

PTS:

Posterior tibial slope

ACL:

Anterior cruciate ligament

CT:

Computed tomography

AP:

Anteroposterior

L:

Lateral

RL:

Right lateral posterior tibial slope

LL:

Left lateral posterior tibial slope

RM:

Right medial posterior tibial slope

LM:

Left medial posterior tibial slope

References

  1. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy. 2006;22:894–9. https://doi.org/10.1016/j.arthro.2006.04.098.

    Article  PubMed  Google Scholar 

  2. Genin P, Weill G, Julliard R. The tibial slope. Proposal for a measurement method. J Radiol. 1993;74:27–33.

    CAS  PubMed  Google Scholar 

  3. Giffin JR, Stabile KJ, Zantop T, Vogrin TM, Woo SL-Y, Harner CD. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med. 2007;35:1443–9. https://doi.org/10.1177/0363546507304665.

    Article  PubMed  Google Scholar 

  4. He M, Zhong X, Li Z, Shen K, Zeng W. Progress in the treatment of knee osteoarthritis with high tibial osteotomy: a systematic review. Syst Rev. 2021;10:56. https://doi.org/10.1186/s13643-021-01601-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br. 1994;76:745–9.

    Article  CAS  PubMed  Google Scholar 

  6. Bernhardson AS, Aman ZS, Dornan GJ, Kemler BR, Storaci HW, Brady AW, et al. Tibial slope and its effect on force in anterior cruciate ligament grafts: anterior cruciate ligament force increases linearly as posterior tibial slope increases. Am J Sports Med. 2019;47:296–302. https://doi.org/10.1177/0363546518820302.

    Article  PubMed  Google Scholar 

  7. Rozinthe A, van Rooij F, Demey G, Saffarini M, Dejour D. Tibial slope correction combined with second revision ACLR grants good clinical outcomes and prevents graft rupture at 7–15-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2021; https://doi.org/10.1007/s00167-021-06750-1.

  8. Dejour D, Saffarini M, Demey G, Baverel L. Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc. 2015;23:2846–52. https://doi.org/10.1007/s00167-015-3758-6.

    Article  PubMed  Google Scholar 

  9. Wittenberg S, Sentuerk U, Renner L, Weynandt C, Perka CF, Gwinner C. Bedeutung des tibialen Slopes in der Knieendoprothetik. Orthopäde. 2020;49:10–7. https://doi.org/10.1007/s00132-019-03777-8.

    Article  PubMed  Google Scholar 

  10. Howard JL, Morcos MW, Lanting BA, Somerville LE, McAuley JP. Reproducing the native posterior tibial slope in cruciate-retaining total knee arthroplasty: technique and clinical implications. Orthopedics. 2020:43. https://doi.org/10.3928/01477447-20191122-06.

  11. Green DW, Sidharthan S, Schlichte LM, Aitchison AH, Mintz DN. Increased posterior tibial slope in patients with Osgood-Schlatter disease: a new association. Am J Sports Med. 2020;48:642–6. https://doi.org/10.1177/0363546519899894.

    Article  PubMed  Google Scholar 

  12. Naendrup J-H, Drouven SF, Shaikh HS, Jaecker V, Offerhaus C, Shafizadeh ST, et al. High variability of tibial slope measurement methods in daily clinical practice: comparisons between measurements on lateral radiograph, magnetic resonance imaging, and computed tomography. Knee. 2020;27:923–9. https://doi.org/10.1016/j.knee.2020.01.013.

    Article  PubMed  Google Scholar 

  13. Yoo JH, Chang CB, Shin KS, Seong SC, Kim TK. Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes. J Arthroplasty. 2008;23:586–92. https://doi.org/10.1016/j.arth.2007.05.006.

    Article  PubMed  Google Scholar 

  14. Brazier J, Migaud H, Gougeon F, Cotten A, Fontaine C, Duquennoy A. Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot. 1996;82:195–200.

    CAS  PubMed  Google Scholar 

  15. Faschingbauer M, Sgroi M, Juchems M, Reichel H, Kappe T. Can the tibial slope be measured on lateral knee radiographs? Knee Surg Sports Traumatol Arthrosc. 2014;22:3163–7. https://doi.org/10.1007/s00167-014-2864-1.

    Article  CAS  PubMed  Google Scholar 

  16. Kessler M, Burkart A, Martinek V, Beer A, Imhoff A. Entwicklung eines 3-dimensionalen Messverfahrens zur Bestimmung des tibialen Gefälles im Spiral-CT. Z Orthop Ihre Grenzgeb. 2003;141:143–7. https://doi.org/10.1055/s-2003-38658.

    Article  CAS  PubMed  Google Scholar 

  17. Hecker A, Lerch TD, Egli RJ, Liechti EF, Klenke FM. The EOS 3D imaging system reliably measures posterior tibial slope. J Orthop Surg Res. 2021;16:388. https://doi.org/10.1186/s13018-021-02529-9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Silva FD, Chemin RN, Ormond Filho AG, Guimarães JB, Zorzenoni FO, Nico MAC. O papel da estereorradiografia na avaliação das deformidades dos membros inferiores. Radiol Bras. 2022;55:104–12. https://doi.org/10.1590/0100-3984.2021.0104.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Folinais D, Thelen P, Delin C, Radier C, Catonne Y, Lazennec JY. Measuring femoral and rotational alignment: EOS system versus computed tomography. Orthop Traumatol Surg Res. 2013;99:509–16. https://doi.org/10.1016/j.otsr.2012.12.023.

    Article  CAS  PubMed  Google Scholar 

  20. Damet J, Fournier P, Monnin P, Sans-Merce M, Ceroni D, Zand T, et al. Occupational and patient exposure as well as image quality for full spine examinations with the EOS imaging system: Occupational and patient exposure as well as image quality for full spine examinations. Med Phys. 2014;41:063901. https://doi.org/10.1118/1.4873333.

    Article  CAS  PubMed  Google Scholar 

  21. Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J, et al. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med. 2005;189:287–97.

    PubMed  Google Scholar 

  22. Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys. 2009;31:681–7. https://doi.org/10.1016/j.medengphy.2009.01.003.

    Article  CAS  PubMed  Google Scholar 

  23. Kalifa G, Charpak Y, Maccia C, Fery-Lemonnier E, Bloch J, Boussard J-M, et al. Evaluation of a new low-dose digital X-ray device: first dosimetric and clinical results in children. Pediatr Radiol. 1998;28:557–61. https://doi.org/10.1007/s002470050413.

    Article  CAS  PubMed  Google Scholar 

  24. Garg B, Mehta N, Bansal T, Malhotra R. EOS® imaging: Concept and current applications in spinal disorders. J Clin Orthop Trauma. 2020;11:786–93. https://doi.org/10.1016/j.jcot.2020.06.012.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luo TD, Stans AA, Schueler BA, Larson AN. Cumulative radiation exposure with eos imaging compared with standard spine radiographs. Spine Deformity. 2015;3:144–50. https://doi.org/10.1016/j.jspd.2014.09.049.

    Article  PubMed  Google Scholar 

  26. Cho BW, Lee T-H, Kim S, Choi C-H, Jung M, Lee KY, et al. Evaluation of the reliability of lower extremity alignment measurements using EOS imaging system while standing in an even weight-bearing posture. Sci Rep. 2021;11:22039. https://doi.org/10.1038/s41598-021-01646-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang J, Tian F, Zhang Z, Shi W, Lin J, Chen L, et al. Reliability and concurrent validity of angle measurements in lower limb: EOS 3D goniometer versus 2D manual goniometer. J Orthop Translat. 2020;24:96–102. https://doi.org/10.1016/j.jot.2020.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marques Luís N, Varatojo R. Radiological assessment of lower limb alignment. EFORT Open Reviews. 2021;6:487–94. https://doi.org/10.1302/2058-5241.6.210015.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zou GY. Sample size formulas for estimating intraclass correlation coefficients with precision and assurance. Stat Med. 2012;31:3972–81. https://doi.org/10.1002/sim.5466.

    Article  CAS  PubMed  Google Scholar 

  30. Després P, Beaudoin G, Gravel P, de Guise JA. Evaluation of a full-scale gas microstrip detector for low-dose X-ray imaging. Nucl Instrum Methods Phys Res, Sect A. 2005;536:52–60. https://doi.org/10.1016/j.nima.2004.07.169.

    Article  CAS  Google Scholar 

  31. Ye Z, Xu J, Chen J, Qiao Y, Wu C, Xie G, et al. Steep lateral tibial slope measured on magnetic resonance imaging is the best radiological predictor of anterior cruciate ligament reconstruction failure. Knee Surg Sports Traumatol Arthrosc. 2022; https://doi.org/10.1007/s00167-022-06923-6.

  32. Pinczew L, Roe J. North Sidney Orthopaedic Research Group. https://www.justinroe.com.au/resources/EOSProtocol-VERSION-9.pdf.

  33. Julliard R, Genin P, Weil G, Palmkrantz P. The median functional slope of the tibia. Principle. Technique of measurement. Value. Interest. Rev Chir Orthop Reparatrice Appar Mot. 1993;79:625–34.

    CAS  PubMed  Google Scholar 

  34. Sorin G, Pasquier G, Drumez E, Arnould A, Migaud H, Putman S. Reproducibility of digital measurements of lower-limb deformity on plain radiographs and agreement with CT measurements. Orthop Traumatol Surg Res. 2016;102:423–8. https://doi.org/10.1016/j.otsr.2016.02.009.

    Article  CAS  PubMed  Google Scholar 

  35. Hoch A, Jud L, Roth T, Vlachopoulos L, Fürnstahl P, Fucentese SF. A real 3D measurement technique for the tibial slope: differentiation between different articular surfaces and comparison to radiographic slope measurement. BMC Musculoskelet Disord. 2020:21. https://doi.org/10.1186/s12891-020-03657-9.

  36. Haddad B, Konan S, Mannan K, Scott G. Evaluation of the posterior tibial slope on MR images in different population groups using the tibial proximal anatomical axis. Acta Orthop Belg. 2012;78:757–63.

    PubMed  Google Scholar 

  37. Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP. Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res. 2009;467:2066–72. https://doi.org/10.1007/s11999-009-0711-3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Akamatsu Y, Sotozawa M, Kobayashi H, Kusayama Y, Kumagai K, Saito T. Usefulness of long tibial axis to measure medial tibial slope for opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2016;24:3661–7. https://doi.org/10.1007/s00167-014-3403-9.

    Article  CAS  PubMed  Google Scholar 

  39. Dean RS, DePhillipo NN, Chahla J, Larson CM, LaPrade RF. Posterior tibial slope measurements using the anatomic axis are significantly increased compared with those that use the mechanical axis. Arthroscopy. 2021;37:243–9. https://doi.org/10.1016/j.arthro.2020.09.006.

    Article  PubMed  Google Scholar 

  40. Radzi S, Uesugi M, Baird A, Mishra S, Schuetz M, Schmutz B. Assessing the bilateral geometrical differences of the tibia – are they the same? Med Eng Phys. 2014;36:1618–25. https://doi.org/10.1016/j.medengphy.2014.09.007.

    Article  CAS  PubMed  Google Scholar 

  41. Utzschneider S, Goettinger M, Weber P, Horng A, Glaser C, Jansson V, et al. Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc. 2011;19:1643–8. https://doi.org/10.1007/s00167-011-1414-3.

    Article  CAS  PubMed  Google Scholar 

  42. Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC, et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg-American. 2008;90:2724–34. https://doi.org/10.2106/JBJS.G.01358.

    Article  Google Scholar 

  43. Dai Y, Cross MB, Angibaud LD, Hamad C, Jung A, Jenny J-Y. Posterior tibial slope impacts intraoperatively measured mid-flexion anteroposterior kinematics during cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2018;26:3325–32. https://doi.org/10.1007/s00167-018-4877-7.

    Article  PubMed  Google Scholar 

  44. Melhem E, Assi A, El Rachkidi R, Ghanem I. EOS(®) biplanar X-ray imaging: concept, developments, benefits, and limitations. J Child Orthop. 2016;10:1–14. https://doi.org/10.1007/s11832-016-0713-0.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ben Abdennebi A, Aubry S, Ounalli L, Fayache MS, Delabrousse E, Petegnief Y. Comparative dose levels between CT-scanner and slot-scanning device (EOS system) in pregnant women pelvimetry. Phys Med. 2017;33:77–86. https://doi.org/10.1016/j.ejmp.2016.12.008.

    Article  CAS  PubMed  Google Scholar 

  46. Chaudhari AS, Kogan F, Pedoia V, Majumdar S, Gold GE, Hargreaves BA. Rapid knee MRI acquisition and analysis techniques for imaging osteoarthritis. J Magn Reson Imaging. 2020;52:1321–39. https://doi.org/10.1002/jmri.26991.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Érica Narahashi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narahashi, É., Guimarães, J.B., Filho, A.G.O. et al. Measurement of tibial slope using biplanar stereoradiography (EOS®). Skeletal Radiol 53, 1091–1101 (2024). https://doi.org/10.1007/s00256-023-04528-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04528-9

Keywords

Navigation