Skip to main content

Advertisement

Log in

Quantitative assessment of anterior talofibular ligament quality in chronic lateral ankle instability using magnetic resonance imaging T2* value

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine T2* normal reference values for anterior talofibular ligament (ATFL) and to investigate the feasibility of the quantitative ATFL quality evaluation in chronic lateral ankle instability (CLAI) using T2* values.

Materials and methods

This study enrolled 15 patients with CLAI and 30 healthy volunteers. The entire ATFL T2* values from the MRI T2* mapping were measured. The prediction equation (variables: age, height, and weight) in a multiple linear regression model was used to calculate the T2* normal reference value in the healthy group. T2* ratio was defined as the ratio of the actual T2* value of the patient’s ATFL to the normal reference value for each patient. A Telos device was used to measure the talar tilt angle (TTA) from the stress radiograph.

Results

T2* values of ATFL in the healthy and CLAI groups were 10.82 ± 1.84 ms and 14.36 ± 4.30 ms, respectively, which are significantly higher in the CLAI group (P < 0.05). The prediction equation of the normal reference T2* value was [14.9 + 0.14 × age (years) − 4.7 × height (m) − 0.03 × weight (kg)] (R2 = 0.65, P < 0.0001). A significant positive correlation was found between the T2* ratio and TTA (r = 0.66, P = 0.007).

Conclusion

MRI T2* values in patients with CLAI were higher than those in healthy participants, and the T2* ratio correlated with TTA, suggesting that T2* values are promising for quantitative assessment of ATFL quality preoperatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, AT, upon reasonable request.

References

  1. Doherty C, Delahunt E, Caulfield B, Hertel J, Ryan J, Bleakley C. The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Med. 2014;44(1):123–40.

    Article  PubMed  Google Scholar 

  2. Waterman BR, Owens BD, Davey S, Zacchilli MA, Belmont PJ Jr. The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am. 2010;92(13):2279–84.

    Article  PubMed  Google Scholar 

  3. Matsui K, Takao M, Miyamoto W, Matsushita T. Early recovery after arthroscopic repair compared to open repair of the anterior talofibular ligament for lateral instability of the ankle. Arch Orthop Trauma Surg. 2016;136(1):93–100.

    Article  PubMed  Google Scholar 

  4. Michels F, Pereira H, Calder J, et al. Searching for consensus in the approach to patients with chronic lateral ankle instability: ask the expert. Knee Surg Sports Traumatol Arthrosc. 2018;26(7):2095–102.

    Article  PubMed  Google Scholar 

  5. Dierckman BD, Ferkel RD. Anatomic reconstruction with a semitendinosus allograft for chronic lateral ankle instability. Am J Sports Med. 2015;43(8):1941–50.

    Article  PubMed  Google Scholar 

  6. Akatsuka Y, Teramoto A, Takashima H, Watanabe K, Yamashita T. Morphologicalevaluation of the calcaneofibular ligament in different ankle positions using a three-dimensional MRI sequence. Surg Radiol Anat. 2019;41(3):307–11.

    Article  PubMed  Google Scholar 

  7. Teramoto A, Akatsuka Y, Takashima H, et al. 3D MRI evaluation of morphological characteristics of lateral ankle ligaments in injured patients and uninjured controls. J Orthop Sci. 2020;25(1):183–7.

    Article  PubMed  Google Scholar 

  8. Yi J, Lee YH, Hahn S, Albakheet SS, Song H-T, Suh J-S. Fast isotropic volumetric magnetic resonance imaging of the ankle: acceleration of the three-dimensional fast spin echo sequence using compressed sensing combined with parallel imaging. Eur J Radiol. 2019;112:52–8.

    Article  PubMed  Google Scholar 

  9. Hong CC, Lee JC, Tsuchida A, et al. Individual fascicles of the ankle lateral ligaments and the lateral fibulotalocalcaneal ligament complex can be identified on 3D volumetric MRI. Knee Surg Sports Traumatol Arthrosc. 2023;31(6):2192–8.

    Article  PubMed  Google Scholar 

  10. Haraguchi N, Ota K, Nishida N, Ozeki T, Yoshida T, Tsutaya A. T1rho mapping of articular cartilage grafts after autologous osteochondral transplantation for osteochondral lesions of the talus: a longitudinal evaluation. J Magn Reson Imaging. 2018;48(2):398–403.

    Article  PubMed  Google Scholar 

  11. Takashima H, Yoshimoto M, Ogon I, et al. Lumbar disc degeneration assessment using T2* relaxation time with ultra-short TE. Magn Reson Imaging. 2020;73:11–4.

    Article  PubMed  Google Scholar 

  12. Matzat SJ, van Tiel J, Gold GE, Oei EH. Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg. 2013;3(3):162–74.

    PubMed  PubMed Central  Google Scholar 

  13. Anz AW, Edison J, Denney TS, et al. 3-T MRI mapping is a valid in vivo method of quantitatively evaluating the anterior cruciate ligament: rater reliability and comparison across age. Skelet Radiol. 2020;49(3):443–52.

    Article  Google Scholar 

  14. Wang HM, Shultz SJ, Ross SE, Henson RA, Perrin DH, Schmitz RJ. Relationship of anterior cruciate ligament volume and T2* relaxation time to anterior knee laxity. Orthop J Sports Med. 2021;9(2):2325967120979986.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jerban S, Hananouchi T, Ma Y, et al. Correlation between the elastic modulus of anterior cruciate ligament (ACL) and quantitative ultrashort echo time (UTE) magnetic resonance imaging. J Orthop Res. 2022;40(10):2330–9.

    Article  PubMed  Google Scholar 

  16. Morvan A, Klouche S, Thes A, Hardy P, Bauer T. Reliability and validity of preoperative MRI for surgical decision making in chronic lateral ankle instability. Eur J Orthop Surg Traumatol. 2018;28(4):713–9.

    Article  PubMed  Google Scholar 

  17. Teramoto A, Iba K, Murahashi Y, et al. Quantitative evaluation of ankle instability using a capacitance-type strain sensor. Foot Ankle Int. 2021;42(8):1074–80.

    Article  PubMed  Google Scholar 

  18. Teramoto A, Murahashi Y, Takahashi K, Watanabe K, Yamashita T. Effect of accelerated rehabilitation on early return to sport after arthroscopic ankle lateral ligament repair. Orthop J Sports Med. 2022;10(9):23259671221121676.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ahn J, Choi JG, Jeong BO. The signal intensity of preoperative magnetic resonance imaging has predictive value for determining the arthroscopic reparability of the anterior talofibular ligament. Knee Surg Sports Traumatol Arthrosc. 2021;29(5):1535–43.

    Article  PubMed  Google Scholar 

  20. Adinyira E, Agyekum K, Danku JC, Addison P, Danku JC. Influence of subcontractor risk management on quality performance of building construction projects in Ghana. J Constr Dev Ctries. 2020;25(2):175–97.

    Google Scholar 

  21. James G, Witten D, Hastie T, Tibshirani R (Eds.). An introduction to statistical learning: with applications in R, 1st ed. 2013, Corr. 7th printing 2017 edition. Springer, New York; 2017.

  22. Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hodgson RJ, O'Connor PJ, Grainger AJ. Tendon and ligament imaging. Br J Radiol. 2012;85(1016):1157–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levy YD, Hasegawa A, Patil S, Koziol JA, Lotz MK, D'Lima DD. Histopathological changes in the human posterior cruciate ligament during aging and osteoarthritis: correlations with anterior cruciate ligament and cartilage changes. Ann Rheum Dis. 2013;72(2):271–7.

    Article  CAS  PubMed  Google Scholar 

  25. Okuda M, Kobayashi S, Toyooka K, et al. Quantitative differentiation of tendon and ligament using magnetic resonance imaging ultrashort echo time T2* mapping of normal knee joint. Acta Radiol. 2022;63(11):1489–96.

    Article  PubMed  Google Scholar 

  26. Chu CR, Williams AA. Quantitative MRI UTE-T2* and T2* show progressive and continued graft maturation over 2 years in human patients after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2019;7(8):2325967119863056.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Warth RJ, Zandiyeh P, Rao M, et al. Quantitative assessment of in vivo human anterior cruciate ligament autograft remodeling: a 3-dimensional UTE-T2* imaging study. Am J Sports Med. 2020;48(12):2939–47.

    Article  PubMed  Google Scholar 

  28. Hasegawa A, Otsuki S, Pauli C, et al. Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis. Arthritis Rheum. 2012;64(3):696–704.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Beveridge JE, Machan JT, Walsh EG, et al. Magnetic resonance measurements of tissue quantity and quality using T(2) * relaxometry predict temporal changes in the biomechanical properties of the healing ACL. J Orthop Res. 2018;36(6):1701–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto T, Inokuchi S, Kokubo T. Clinical study of chronic lateral ankle instability: injured ligaments compared with stress X-ray examination. J Orthop Sci. 2009;14(6):699–703.

    Article  PubMed  Google Scholar 

  31. Biercevicz AM, Murray MM, Walsh EG, Miranda DL, Machan JT, Fleming BC. T2 * MR relaxometry and ligament volume are associated with the structural properties of the healing ACL. J Orthop Res. 2014;32(4):492–9.

    Article  PubMed  Google Scholar 

  32. Biercevicz AM, Proffen BL, Murray MM, Walsh EG, Fleming BC. T2* relaxometry and volume predict semi-quantitative histological scoring of an ACL bridge-enhanced primary repair in a porcine model. J Orthop Res. 2015;33(8):1180–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhi X, Lv Z, Zhang C, Kong C, Wei S, Xu F. Does arthroscopic repair show superiority over open repair of lateral ankle ligament for chronic lateral ankle instability: a systematic review and meta-analysis. J Orthop Surg Res. 2020;15(1):355.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Teramoto.

Ethics declarations

Ethical approval

Ethical approval for this study was obtained from the institutional review board in Sapporo Medical University Hospital (reference no: 322-250).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akatsuka, Y., Teramoto, A., Murahashi, Y. et al. Quantitative assessment of anterior talofibular ligament quality in chronic lateral ankle instability using magnetic resonance imaging T2* value. Skeletal Radiol 53, 733–739 (2024). https://doi.org/10.1007/s00256-023-04480-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04480-8

Keywords

Navigation