Skip to main content

Advertisement

Log in

Automatic MRI–based rotator cuff muscle segmentation using U-Nets

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Background

The rotator cuff (RC) is a crucial anatomical element within the shoulder joint, facilitating an extensive array of motions while maintaining joint stability. Comprised of the subscapularis, infraspinatus, supraspinatus, and teres minor muscles, the RC plays an integral role in shoulder functionality. RC injuries represent prevalent, incapacitating conditions that impose a substantial impact on approximately 8% of the adult population in the USA. Segmentation of these muscles provides valuable anatomical information for evaluating muscle quality and allows for better treatment planning.

Materials and methods

We developed a model based on residual deep convolutional encoder-decoder U-net to segment RC muscles on oblique sagittal T1-weighted images MRI. Our data consisted of shoulder MRIs from a cohort of 157 individuals, consisting of individuals without RC tendon tear (N=79) and patients with partial RC tendon tear (N=78). We evaluated different modeling approaches. The performance of the models was evaluated by calculating the Dice coefficient on the hold out test set.

Results

The best-performing model’s median Dice coefficient was measured to be 89% (Q1:85%, Q3:96%) for the supraspinatus, 86% (Q1:82%, Q3:88%) for the subscapularis, 86% (Q1:82%, Q3:90%) for the infraspinatus, and 78% (Q1:70%, Q3:81%) for the teres minor muscle, indicating a satisfactory level of accuracy in the model’s predictions.

Conclusion

Our computational models demonstrated the capability to delineate RC muscles with a level of precision akin to that of experienced radiologists. As hypothesized, the proposed algorithm exhibited superior performance when segmenting muscles with well-defined boundaries, including the supraspinatus, subscapularis, and infraspinatus muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weber S, Chahal J. Case studies AAOS clinical practice guideline: management of rotator cuff injuries. JAAOS-J Am Acad Orthop Surg. 2021;29(3). https://journals.lww.com/jaaos/Fulltext/2021/02010/Case_Studies_AAOS_Clinical_Practice_Guideline_.3.aspx. Accessed Dec 2022.

  2. Narvy SJ, Didinger TC, Lehoang D, Vangsness CT, Tibone JE, Hatch GFR, et al. Direct cost analysis of outpatient arthroscopic rotator cuff repair in medicare and non-medicare populations. Orthop J Sports Med. 2016;4(10):2325967116668829.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mellado JM, Calmet J, Olona M, Esteve C, Camins A, Pérez del Palomar L, et al. Surgically repaired massive rotator cuff tears: MRI of tendon integrity, muscle fatty degeneration, and muscle atrophy correlated with intraoperative and clinical findings. Am J Roentgenol. 2005;184(5):1456–63.

    Article  CAS  Google Scholar 

  4. Wieser K, Joshy J, Filli L, Kriechling P, Sutter R, Fürnstahl P, et al. Changes of supraspinatus muscle volume and fat fraction after successful or failed arthroscopic rotator cuff repair. A J Sports Med. 2019;47(13):3080–8.

    Article  Google Scholar 

  5. Werthel JD, Boux de Casson F, Burdin V, Athwal GS, Favard L, Chaoui J, et al. CT-based volumetric assessment of rotator cuff muscle in shoulder arthroplasty preoperative planning. Bone Joint Open. 2021;2(7):552–61.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zanetti M, Gerber C, Hodler J. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Investig Radiol. 1998;33(3). https://journals.lww.com/investigativeradiology/Fulltext/1998/03000/Quantitative_Assessment_of_the_Muscles_of_the.6.aspx. Accessed Dec 2022.

  7. Lehtinen J, Tingart M, Apreleva M, Zurakowski D, Palmer W, Warner J. Practical assessment of rotator cuff muscle volumes using shoulder MRI. Acta Orthop Scand. 2003;74(6):722–9.

    Article  PubMed  Google Scholar 

  8. Schlaeger S, Freitag F, Klupp E, Dieckmeyer M, Weidlich D, Inhuber S, et al. Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: the reference database MyoSegmenTUM. Lundberg P, editor. PLoS One. 2018 13 (6):e0198200.

  9. Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28(1):31–8.

    Article  PubMed  CAS  Google Scholar 

  10. Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, et al. Deep learning interpretation of echocardiograms. NPJ Digital Med. 2020;3(1):10.

    Article  Google Scholar 

  11. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954–61.

    Article  PubMed  CAS  Google Scholar 

  12. Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, et al. Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water–fat MRI. J Magn Reson Imag. 2015;41(6):1558–69.

    Article  Google Scholar 

  13. Ding J, Cao P, Chang HC, Gao Y, Chan SHS, Vardhanabhuti V. Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI. Insights Imag. 2020;11(1):128.

    Article  Google Scholar 

  14. Iglesias JE, Sabuncu MR. Multi-atlas segmentation of biomedical images: a survey. Med Image Anal. 2015;24(1):205–19.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Medina G, Buckless CG, Thomasson E, Oh LS, Torriani M. Deep learning method for segmentation of rotator cuff muscles on MR images. Skelet Radiol. 2021;50(4):683–92.

    Article  Google Scholar 

  16. Kim H, Shin K, Kim H, Lee E, Sup Chung SW, Koh KH, et al. Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears? PLoS One. 2022;17(10):e0274075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Riem L, Feng X, Cousins M, DuCharme O, Leitch EB, Werner BC, Sheean AJ, Hart J, Antosh IJ, Blemker SS. A Deep Learning Algorithm for Automatic 3D Segmentation of Rotator Cuff Muscle and Fat from Clinical MRI Scans. Radiol Artif Intell. 2023;5(2):e220132. https://doi.org/10.1148/ryai.220132.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation 2023. http://arxiv.org/abs/1505.04597. Accessed Mar 2023.

  19. Jadon S. A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) [Internet]. Via del Mar. Chile: IEEE; 2020. p. 1–7. https://ieeexplore.ieee.org/document/9277638/. Accessed Dec 2022.

  20. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Advances in neural information processing systems. Curran Associates Inc.; 2014. https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html. Accessed Dec 2022.

  21. Wang Y-W, Lee C-C, Lo C-M. Supraspinatus segmentation from shoulder ultrasound images using a multilayer self-shrinking snake. IEEE Access. 2019;7:146724–31.

    Article  Google Scholar 

  22. Taghizadeh E, Truffer O, Becce F, Eminian S, Gidoin S, Terrier A, et al. Deep learning for the rapid automatic quantification and characterization of rotator cuff muscle degeneration from shoulder CT datasets. Eur Radiol. 2021;31(1):181–90.

    Article  PubMed  Google Scholar 

  23. Zoga AC, Kamel SI, Hynes JP, Kavanagh EC, O’Connor PJ, Forster BB. The evolving roles of MRI and ultrasound in first-line imaging of rotator cuff injuries. Am J Roentgenol. 2021;217(6):1390–400.

    Article  Google Scholar 

  24. Kuzel BR, Grindel S, Papandrea R, Ziegler D. Fatty infiltration and rotator cuff atrophy. JAAOS – J Am Acad Orthop Surg. 2013;21(10). https://journals.lww.com/jaaos/Fulltext/2013/10020/Fatty_Infiltration_and_Rotator_Cuff_Atrophy.4.aspx. Accessed Dec 2022.

  25. Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elb Surg. 1999;8(6):599–605.

    Article  CAS  Google Scholar 

  26. Gadermayr M, Disch C, Müller M, Merhof D, Gess B. A comprehensive study on automated muscle segmentation for assessing fat infiltration in neuromuscular diseases. Magn Reson Imag. 2018;1(48):20–6.

    Article  Google Scholar 

  27. Kim JY, Ro K, You S, Nam BR, Yook S, Park HS, et al. Development of an automatic muscle atrophy measuring algorithm to calculate the ratio of supraspinatus in supraspinous fossa using deep learning. Comput Methods Prog Biomed. 2019;1(182):105063.

    Article  Google Scholar 

  28. Conze PH, Brochard S, Burdin V, Sheehan FT, Pons C. Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders. arXiv. 2020. http://arxiv.org/abs/1901.01620

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Chalian.

Ethics declarations

Conflict of interest

Majid Chalian is recipient of the RSNA R&E Scholar Grant and Boeing Technology Development Grant. The remaining authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, E., Chalian, M., Pooyan, A. et al. Automatic MRI–based rotator cuff muscle segmentation using U-Nets. Skeletal Radiol 53, 537–545 (2024). https://doi.org/10.1007/s00256-023-04447-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04447-9

Keywords

Navigation