Skip to main content

Advertisement

Log in

Clinical, functional, and opportunistic CT metrics of sarcopenia at the point of imaging care: analysis of all-cause mortality

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study examines clinical, functional, and CT metrics of sarcopenia and all-cause mortality in older adults undergoing outpatient imaging.

Methods

The study included outpatients ≥ 65 years of age undergoing CT or PET/CT at a tertiary care institution. Assessments included screening questionnaires for sarcopenia (SARC-F) and frailty (FRAIL scale), and measurements of grip strength and usual gait speed (6 m course). Skeletal muscle area (SMA), index (SMI, area/height2) and density (SMD) were measured on CT at T12 and L3. A modified SMI was also examined (SMI-m, area/height). Mortality risk was studied with Cox proportional hazard analysis.

Results

The study included 416 patients; mean age 73.8 years [sd 6.2]; mean follow-up 2.9 years (sd 1.34). Abnormal grip, SARC-F, and FRAIL scale assessments were associated with higher mortality risk (HR [95%CI] = 2.0 [1.4–2.9], 1.6 [1.1–2.3], 2.0 [1.4–2.8]). Adjusting for age, higher L3-SMA, T12-SMA, T12-SMI and T12-SMI-m were associated with lower mortality risk (HR [95%CI] = 0.80 [0.65–0.90], 0.76 [0.64–0.90], 0.84 [0.70–1.00], and 0.80 [0.67–0.90], respectively). T12-SMD and L3-SMD were not predictive of mortality. After adjusting for abnormal grip strength and FRAIL scale assessments, T12-SMA and T12-SMI-m remained predictive of mortality risk (HR [95%CI] = 0.83 [0.70–1.00] and 0.80 [0.67–0.97], respectively).

Conclusion

CT areal metrics were weaker predictors of all-cause mortality than clinical and functional metrics of sarcopenia in our older patient cohort; a CT density metric (SMD) was not predictive. Of areal CT metrics, SMI (area/height2) appeared to be less effective than non-normalized SMA or SMA normalized by height1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Writing group for the European working group on Sarcopenia in older people 2 (EWGSOP2), and the extended group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31.

    Article  Google Scholar 

  2. Yang L, Yao X, Shen J, et al. Comparison of revised EWGSOP criteria and four other diagnostic criteria of sarcopenia in Chinese community-dwelling elderly residents. Exp Gerontol. 2020;130:110798.

    Article  PubMed  CAS  Google Scholar 

  3. Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):86–99.

    Article  PubMed  Google Scholar 

  4. Mayhew AJ, Amog K, Phillips S, et al. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing. 2019;48(1):48–56.

    Article  PubMed  CAS  Google Scholar 

  5. Westbury LD, Beaudart C, Bruyère O, et al. International musculoskeletal ageing network. Recent sarcopenia definitions-prevalence, agreement and mortality associations among men: Findings from population-based cohorts. J Cachexia Sarcopenia Muscle. 2023;14(1):565–75.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lu JL, Ding LY, Xu Q, et al. Screening accuracy of SARC-F for Sarcopenia in the elderly: A diagnostic meta-analysis. J Nutr Health Aging. 2021;25(2):172–82.

    Article  PubMed  Google Scholar 

  7. Wu AH, Setiawan VW, Lim U, et al. Prognostic utility of self-reported sarcopenia (SARC-F) in the Multiethnic Cohort. J Cachexia Sarcopenia Muscle. 2022;13(2):987–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ida S, Kaneko R, Imataka K, et al. Verification of the predictive validity for mortality of the SARC-F questionnaire based on a meta-analysis. Aging Clin Exp Res. 2021;33(4):835–42.

    Article  PubMed  Google Scholar 

  9. Reijnierse EM, Trappenburg MC, Blauw GJ, et al. Common ground? The concordance of Sarcopenia and frailty definitions. J Am Med Dir Assoc. 2016;17(4):371.e7-12.

    Article  PubMed  Google Scholar 

  10. Woo J, Leung J, Morley JE. Comparison of frailty indicators based on clinical phenotype and the multiple deficit approach in predicting mortality and physical limitation. J Am Geriatr Soc. 2012;60(8):1478–86.

    Article  PubMed  Google Scholar 

  11. Morley JE, Malmstrom TK, Miller DK. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans. J Nutr Health Aging. 2012;16(7):601–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Amini B, Boyle SP, Boutin RD, Lenchik L. Approaches to assessment of muscle mass and myosteatosis on computed tomography: a systematic review. J Gerontol A Biol Sci Med Sci. 2019;74:1671–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goodpaster BH, Thaete FL, Kelley DE. Composition of skeletal muscle evaluated with computed tomography. Ann N Y Acad Sci. 2000;904:18–24.

    Article  PubMed  CAS  Google Scholar 

  14. Walowski CO, Braun W, Maisch MJ, et al. Reference values for skeletal muscle mass - current concepts and methodological considerations. Nutrients. 2020;12(3):755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Boutin RD, Bamrungchart S, Bateni CP, et al. CT of patients with hip fracture: muscle size and attenuation help predict mortality. AJR Am J Roentgenol. 2017;208(6):W208–15.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pamoukdjian F, Bouillet T, Lévy V, Soussan M, Zelek L, Paillaud E. Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: A systematic review. Clin Nutr. 2018;37(4):1101–13.

    Article  PubMed  Google Scholar 

  17. Lenchik L, Lenoir KM, Tan J, Boutin RD, et al. Opportunistic measurement of skeletal muscle size and muscle attenuation on computed tomography predicts 1-year mortality in Medicare patients. J Gerontol A Biol Sci Med Sci. 2019;74(7):1063–9.

    Article  PubMed  Google Scholar 

  18. Yao L, Petrosyan A, Fuangfa P, Lenchik L, Boutin RD. Diagnosing sarcopenia at the point of imaging care: analysis of clinical, functional, and opportunistic CT metrics. Skeletal Radiol. 2021;50(3):543–50.

    Article  PubMed  Google Scholar 

  19. Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016;7:28–36.

    Article  PubMed  Google Scholar 

  20. Gleason LJ, Benton EA, Alvarez-Nebreda ML, Weaver MJ, Harris MB, Javedan H. FRAIL questionnaire screening tool and short-term outcomes in geriatric fracture patients. J Am Med Dir Assoc. 2017;18(12):1082–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hamilton GF, McDonald C, Chenier TC. Measurement of grip strength: validity and reliability of the sphygmomanometer and Jamar grip dynamometer. J Orthop Sports Phys Ther. 1992;16(5):215–9.

    Article  PubMed  CAS  Google Scholar 

  22. Wang M. Developing Novel Computational Approaches to Characterize and Predict Therapeutic Performances Using Real-World Data (Doctoral dissertation, UCSF). 2022. https://escholarship.org/uc/item/5wn4v2sk. Accessed 15 Jan 2023

  23. Boutin RD, Kaptuch JM, Bateni CP, Chalfant JS, Yao L. Influence of IV contrast administration on CT measures of muscle and bone attenuation: Implications for Sarcopenia and osteoporosis evaluation. AJR Am J Roentgenol. 2016;207(5):1046–54.

    Article  PubMed  Google Scholar 

  24. van Vugt JL, Levolger S, Gharbharan A, et al. A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. J Cachexia Sarcopenia Muscle. 2017;8(2):285–97.

    Article  PubMed  Google Scholar 

  25. Derstine BA, Holcombe SA, Goulson RL, et al. Quantifying Sarcopenia reference values using lumbar and thoracic muscle areas in a healthy population. J Nutr Health Aging. 2017;21(10):180–5.

    PubMed  CAS  Google Scholar 

  26. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep. 2018;8(1):11369.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Heymsfield SB, Heo M, Thomas D, Pietrobelli A. Scaling of body composition to height: relevance to height-normalized indexes. Am J Clin Nutr. 2011;93(4):736–40.

    Article  PubMed  CAS  Google Scholar 

  28. Heymsfield SB, Hwaung P, Ferreyro-Bravo F, Heo M, Thomas DM, Schuna JM Jr. Scaling of adult human bone and skeletal muscle mass to height in the US population. Am J Hum Biol. 2019;31(4):e23252.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Magudia K, Bridge CP, Bay CP, et al. Population-Scale CT-based body composition analysis of a large outpatient population using deep learning to derive age-, sex-, and race-specific reference curves. Radiology. 2021;298(2):319–29.

    Article  PubMed  Google Scholar 

  30. Mayhew AJ, Raina P. Sarcopenia: new definitions, same limitations. Age Ageing. 2019;48(5):613–4.

    Article  PubMed  Google Scholar 

  31. Fernandes LV, Paiva AEG, Silva ACB, et al. Prevalence of sarcopenia according to EWGSOP1 and EWGSOP2 in older adults and their associations with unfavorable health outcomes: a systematic review. Aging Clin Exp Res. 2022;34(3):505–14.

    Article  PubMed  Google Scholar 

  32. Gong S, Qian D, Riazi S, et al. Association between the FRAIL scale and postoperative complications in older surgical patients: a systematic review and meta-analysis. Anesth Analg. 2023;136(2):251–61.

    Article  PubMed  Google Scholar 

  33. Petermann-Rocha F, Parra-Soto S, Cid V, et al. The association between walking pace and grip strength and all-cause mortality: A prospective analysis from the MAUCO cohort. Maturitas. 2023;168:37–43.

    Article  PubMed  Google Scholar 

  34. Cheng FW, Gao X, Mitchell DC, et al. Body mass index and all-cause mortality among older adults. Obesity (Silver Spring). 2016;24(10):2232–9.

    Article  PubMed  Google Scholar 

  35. Javed AA, Aljied R, Allison DJ, Anderson LN, Ma J, Raina P. Body mass index and all-cause mortality in older adults: A scoping review of observational studies. Obes Rev. 2020;21(8):e13035. https://doi.org/10.1111/obr.13035.

    Article  PubMed  Google Scholar 

  36. Zumsteg DM, Chu CE, Midwinter MJ. Radiographic assessment of sarcopenia in the trauma setting: a systematic review. Trauma Surg Acute Care Open. 2020;5(1):e000414.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Su H, Ruan J, Chen T, Lin E, Shi L. CT-assessed sarcopenia is a predictive factor for both long-term and short-term outcomes in gastrointestinal oncology patients: a systematic review and meta-analysis. Cancer Imaging. 2019;19(1):82.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nishimura JM, Ansari AZ, D’Souza DM, Moffatt-Bruce SD, Merritt RE, Kneuertz PJ. Computed tomography-assessed skeletal muscle mass as a predictor of outcomes in lung cancer surgery. Ann Thorac Surg. 2019;108(5):1555–64.

    Article  PubMed  Google Scholar 

  39. Rossi F, Valdora F, Bignotti B, Torri L, Succio G, Tagliafico AS. Evaluation of body computed tomography-determined sarcopenia in breast cancer patients and clinical outcomes: A systematic review. Cancer Treat Res Commun. 2019;21:100154.

    Article  PubMed  Google Scholar 

  40. Soud M, Alahdab F, Ho G, et al. Usefulness of skeletal muscle area detected by computed tomography to predict mortality in patients undergoing transcatheter aortic valve replacement: a meta-analysis study. Int J Cardiovasc Imaging. 2019;35(6):1141–7.

    Article  PubMed  Google Scholar 

  41. Lenchik L, Barnard R, Boutin RD, et al. Automated muscle measurement on chest CT predicts all-cause mortality in older adults from the national lung screening trial. J Gerontol A Biol Sci Med Sci. 2021;76(2):277–85.

    Article  PubMed  Google Scholar 

  42. Pickhardt PJ, Perez AA, Garrett JW, Graffy PM, Zea R, Summers RM. Fully automated deep learning tool for sarcopenia assessment on CT: L1 versus L3 vertebral level muscle measurements for opportunistic prediction of adverse clinical outcomes. AJR Am J Roentgenol. 2022;218(1):124–31.

    Article  PubMed  Google Scholar 

  43. Shafaat O, Liu Y, Jackson KR, et al. Association between abdominal CT measurements of body composition before deceased donor liver transplant with posttransplant outcomes. Radiology. 2023;306(3):e212403. https://doi.org/10.1148/radiol.212403.

    Article  PubMed  Google Scholar 

  44. Shachar SS, Deal AM, Weinberg M, et al. Skeletal muscle measures as predictors of toxicity, hospitalization, and survival in patients with metastatic breast cancer receiving Taxane-based chemotherapy. Clin Cancer Res. 2017;23(3):658–65.

    Article  PubMed  CAS  Google Scholar 

  45. Crawford MA, Criqui MH, Forbang N, Unkart JT, Allison MA, Larsen BA. Associations of abdominal muscle area and density with coronary artery calcium volume and density: The multi-ethnic study of atherosclerosis. Metabolism. 2020;107:154230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Weinberg MS, Shachar SS, Muss HB, et al. Beyond sarcopenia: Characterization and integration of skeletal muscle quantity and radiodensity in a curable breast cancer population. Breast J. 2018;24(3):278–84.

    Article  PubMed  Google Scholar 

  47. Lortie J, Gage G, Rush B, Heymsfield SB, Szczykutowicz TP, Kuchnia AJ. The effect of computed tomography parameters on sarcopenia and myosteatosis assessment: a scoping review. J Cachexia Sarcopenia Muscle. 2022;13(6):2807–19.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Burns JE, Yao J, Chalhoub D, Chen JJ, Summers RM. A machine learning algorithm to estimate Sarcopenia on abdominal CT. Acad Radiol. 2020;27(3):311–20.

    Article  PubMed  Google Scholar 

  49. Jing X, Tan L, Fu H, Yang L, Yang M. Associations of ADL disability with trunk muscle mass and muscle quality indicators measured by opportunistic chest computed tomography imaging among older inpatients. Front Med (Lausanne). 2021;28(8):743698.

    Article  Google Scholar 

  50. Anyene I, Caan B, Williams GR, et al. Body composition from single versus multi-slice abdominal computed tomography: Concordance and associations with colorectal cancer survival. J Cachexia Sarcopenia Muscle. 2022;13(6):2974–84.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Brown JC, Heymsfield SB, Caan BJ. Scaling of computed tomography body composition to height: relevance of height-normalized indices in patients with colorectal cancer. J Cachexia Sarcopenia Muscle. 2022;13(1):203–9.

    Article  PubMed  Google Scholar 

  52. Heymsfield SB, Gallagher D, Mayer L, Beetsch J, Pietrobelli A. Scaling of human body composition to stature: new insights into body mass index. Am J Clin Nutr. 2007;86:82–91.

    Article  PubMed  CAS  Google Scholar 

  53. Heymsfield SB, Gallagher D, Kotler DP, Wang Z, Allison DB, Heshka S. Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass. Am J Physiol Endocrinol Metab. 2002;282(1):E132–8

  54. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63.

    Article  PubMed  CAS  Google Scholar 

  55. Shen W, Punyanitya M, Wang Z, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 1985;2004(97):2333–8.

    Google Scholar 

  56. Schweitzer L, Geisler C, Pourhassan M, et al. Estimation of skeletal muscle mass and visceral adipose tissue volume by a single magnetic resonance imaging slice in healthy elderly adults. J Nutr. 2016;146(10):2143–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Institutes of Health grants R61AT012187 and R01AR076088. This project was facilitated by the UC Davis Health Innovation Technology, Data Center of Excellence, and the assistance of Sharon Myers and Anna Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Yao.

Ethics declarations

Conflicts of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Petrosyan, A., Chaudhari, A. . et al. Clinical, functional, and opportunistic CT metrics of sarcopenia at the point of imaging care: analysis of all-cause mortality. Skeletal Radiol 53, 515–524 (2024). https://doi.org/10.1007/s00256-023-04438-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04438-w

Keywords

Navigation