Skip to main content

Advertisement

Log in

T1-VIBE and STIR MRI of lumbar pars interarticularis injuries in elite athletes: fracture characterisation and potential prognostic indicators

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess how pars interarticularis fracture characteristics on T1-VIBE and STIR MRI relate to healing and identify anatomical parameters that may impact healing.

Materials and methods

A retrospective review of an MRI series of lumbar pars interarticularis injuries in elite athletes over a 3-year period. Fracture configurations, signal intensities and anatomical parameters were recorded by two radiologists. Statistical analysis employed multilevel mixed-effects linear regressions, adjusted for repeated measures and baseline covariates.

Results

Forty-seven lumbar pars interarticularis injuries among 31 athletes were assessed. On final scans for each athlete, 15% (7/47) injuries had worsened, 23% (11/47) remained stable, 43% (20/47) partially healed and 19% (9/47) healed completely. Healing times varied, quickest was 49 days for a chronic fracture in a footballer. Bone marrow oedema signal was highest in worsened fractures, followed by improved, and lowest in stable fractures. As healing progressed, T1-VIBE signal at the fracture line decreased. Bone marrow oedema and fracture line signal peaked at 90–120 days before decreasing until 210–240 days. Fractures with smaller dimensions, more vertical orientation and a longer superior articular facet beneath were significantly associated with better healing (p < 0.05).

Conclusion

Most diagnosed athletic pars interarticularis injuries improve. Normalising T1-VIBE signal at the fracture line is a novel measurable indicator of bony healing. Contrastingly, bone marrow oedema signal is higher in active fractures irrespective of healing or deterioration. Injuries initially perceived as worsening may be exhibiting the normal osteoclastic phase of healing. Better outcomes favour smaller, vertical fractures with a longer superior articular facet beneath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tawfik S, Phan K, Mobbs RJ, Rao PJ. The incidence of pars interarticularis defects in athletes. Glob Spine J. 2020;10(1):89–101.

    Article  Google Scholar 

  2. Gregory PL, Batt ME, Kerslake RW. Comparing spondylolysis in cricketers and soccer players. Br J Sports. 2004;38:737–42.

    Article  CAS  Google Scholar 

  3. Selhorst M, Allen M, McHugh R, MacDonald J. Rehabilitation considerations for spondylolysis in the youth athlete. Int J Sports Phys Ther. 2020;15:287–300.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Choi JH, Ochoa JK, Lubinus A, Timon S, Lee Y-P, Bhatia NN. Management of lumbar spondylolysis in the adolescent athlete: a review of over 200 cases. Spine J. 2022;22:1628–33.

    Article  PubMed  Google Scholar 

  5. Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP. The natural history of spondylolysis and spondylolisthesis. J Bone Jt Surg - Ser A. 1984;66(5):699–707.

    Article  CAS  Google Scholar 

  6. Goetzinger S, Courtney S, Yee K, Welz M, Kalani M, Neal M. Spondylolysis in young athletes: an overview emphasizing nonoperative management. J Sport Med (Hindawi Publ Corp). 2020;2020:9235958.

    Google Scholar 

  7. Chung CC, Shimer AL. Lumbosacral spondylolysis and spondylolisthesis. Clin Sports Med. 2021;40:471–90.

    Article  PubMed  Google Scholar 

  8. Rush JK, Astur N, Scott S, Kelly DM, Sawyer JR, Warner WC. Use of magnetic resonance imaging in the evaluation of spondylolysis. J Pediatr Orthop. 2015;35(3):271–5.

    Article  PubMed  Google Scholar 

  9. Sairyo K, Katoh S, Takata Y, Terai T, Yasui N, Goel VK, et al. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents: a clinical and biomechanical study. Spine (Phila. Pa. 1976). 2006;31(2):206-11.

  10. Koh E, Walton ER, Watson P. VIBE MRI: an alternative to CT in the imaging of sports-related osseous pathology? Br J Radiol. 2018;91:20170815.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cheung KK, Dhawan RT, Wilson LF, Peirce NS, Rajeswaran G. Pars interarticularis injury in elite athletes - the role of imaging in diagnosis and management. Eur J Radiol. 2018;108:28–42.

    Article  PubMed  Google Scholar 

  12. Ang EC, Robertson AF, Malara FA, O’Shea T, Roebert JK, Schneider ME, et al. Diagnostic accuracy of 3-T magnetic resonance imaging with 3D T1 VIBE versus computer tomography in pars stress fracture of the lumbar spine. Skeletal Radiol. 2016;45:1533–40.

    Article  PubMed  CAS  Google Scholar 

  13. Hollenberg GM, Beattie PF, Meyers SP, Weinberg EP, Adams MJ. Stress reactions of the lumbar pars interarticularis: the development of a new MRI classification system. Spine (Phila Pa 1976). 2002;27(2):181–6.

  14. Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology. 1999;212:876–84.

    Article  PubMed  CAS  Google Scholar 

  15. Masharawi Y, Dar G, Peleg S, Steinberg N, Alperovitch-Najenson D, Salame K, et al. Lumbar facet anatomy changes in spondylolysis: a comparative skeletal study. Eur Spine J. 2007;16(7):993–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Koslosky E, Gendelberg D. Classification in brief: the Meyerding classification system of spondylolisthesis. Clin Orthop Relat Res. 2020;478:1125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weishaupt D, Zanetti M, Boos N, Hodler J. MR imaging and CT in osteoarthritis of the lumbar facet joints. Skeletal Radiol. 1999;28:215–9.

    Article  PubMed  CAS  Google Scholar 

  18. Hallgren KA. Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol. 2012;8:23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Singh SP, Rotstein AH, Saw AE, Saw R, Kountouris A, James T. Radiological healing of lumbar spine stress fractures in elite cricket fast bowlers. J Sci Med Sport. 2021;24(2):112–5.

    Article  PubMed  Google Scholar 

  20. Johnson LC, Stradford HT, Geis RW, Dineen JR, Kerley E. Histogenesis of stress fractures. J Bone Jt Surg [Am]. 1963;45:1542.

    Google Scholar 

  21. Yamashita K, Sakai T, Takata Y, Hayashi F, Tezuka F, Morimoto M, et al. Utility of STIR-MRI in detecting the pain generator in asymmetric bilateral pars fracture: a report of 5 cases. Neurol Med Chir (Tokyo). 2018;58(2):91–5.

    Article  PubMed  Google Scholar 

  22. Borg B, Modic MT, Obuchowski N, Cheah G. Pedicle marrow signal hyperintensity on short tau inversion recovery- and T2-weighted images: prevalence and relationship to clinical symptoms. Am J Neuroradiol. 2011;32(9):1624–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sims K, Kountouris A, Stegeman JR, Rotstein AH, Beakley D, Saw AE, et al. MRI bone marrow edema signal intensity: a reliable and valid measure of lumbar bone stress injury in elite junior fast bowlers. Spine (Phila Pa 1976). 2020;45(18):E1166–71.

  24. Nakamae T, Kamei N, Tamura T, Kanda T, Nakanishi K, Adachi N. Quantitative assessment of bone marrow edema in adolescent athletes with lumbar spondylolysis using contrast ratio on magnetic resonance imaging. Asian Spine J. 2021;15(5):682–7.

    Article  PubMed  Google Scholar 

  25. Dunn AJ, Campbell RSD, Mayor PE, Rees D. Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis. Skeletal Radiol. 2008;37:443–50.

    Article  PubMed  Google Scholar 

  26. Ganiyusufoglu AK, Onat L, Karatoprak O, Enercan M, Hamzaoglu A. Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine. Clin Radiol. 2010;65(11):902–7.

    Article  PubMed  CAS  Google Scholar 

  27. Campbell RSD, Grainger AJ, Hide IG, Papastefanou S, Greenough CG. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI. Skeletal Radiol. 2005;34:63–73.

    Article  PubMed  CAS  Google Scholar 

  28. Katakura M, Mitchell AWM, Lee JC, Calder JD. Is it time to replace CT with T1-VIBE MRI for the assessment of musculoskeletal injuries? Bone Joint J. 2020;102-B:1435–7.

  29. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360–f2360.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91:1882–9.

    Article  PubMed  Google Scholar 

  31. Warncke ML, Wiese NJ, Tahir E, Sehner S, Heinemann A, Regier M, et al. Highly reduced-dose CT of the lumbar spine in a human cadaver model. PLoS ONE. 2020;15:e0240199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Watura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watura, C., Mitchell, A.W.M., Fahy, D. et al. T1-VIBE and STIR MRI of lumbar pars interarticularis injuries in elite athletes: fracture characterisation and potential prognostic indicators. Skeletal Radiol 53, 489–497 (2024). https://doi.org/10.1007/s00256-023-04437-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04437-x

Keywords

Navigation