Skip to main content

Advertisement

Log in

Selective MR neurography–guided lumbosacral plexus perineural injections: techniques, targets, and territories

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

The T12 to S4 spinal nerves form the lumbosacral plexus in the retroperitoneum, providing sensory and motor innervation to the pelvis and lower extremities. The lumbosacral plexus has a wide range of anatomic variations and interchange of fibers between nerve anastomoses. Neuropathies of the lumbosacral plexus cause a broad spectrum of complex pelvic and lower extremity pain syndromes, which can be challenging to diagnose and treat successfully. In their workup, selective nerve blocks are employed to test the hypothesis that a lumbosacral plexus nerve contributes to a suspected pelvic and extremity pain syndrome, whereas therapeutic perineural injections aim to alleviate pain and paresthesia symptoms. While the sciatic and femoral nerves are large in caliber, the iliohypogastric and ilioinguinal, genitofemoral, lateral femoral cutaneous, anterior femoral cutaneous, posterior femoral cutaneous, obturator, and pudendal nerves are small, measuring a few millimeters in diameter and have a wide range of anatomic variants. Due to their minuteness, direct visualization of the smaller lumbosacral plexus branches can be difficult during selective nerve blocks, particularly in deeper pelvic locations or larger patients. In this setting, the high spatial and contrast resolution of interventional MR neurography guidance benefits nerve visualization and targeting, needle placement, and visualization of perineural injectant distribution, providing a highly accurate alternative to more commonly used ultrasonography, fluoroscopy, and computed tomography guidance for perineural injections. This article offers a practical guide for MR neurography–guided lumbosacral plexus perineural injections, including interventional setup, pulse sequence protocols, lumbosacral plexus MR neurography anatomy, anatomic variations, and injection targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sequeiros RB, Sinikumpu JJ, Ojala R, Jarvinen J, Fritz J. Pediatric musculoskeletal interventional MRI. Top Magn Reson Imaging. 2018;27(1):39–44.

    Article  PubMed  Google Scholar 

  2. Fritz J, Sequeiros RB, Carrino JA. Magnetic resonance imaging-guided spine injections. Top Magn Reson Imaging. 2011;22(4):143–51.

    Article  PubMed  Google Scholar 

  3. Fritz J, Dellon AL, Williams EH, Rosson GD, Belzberg AJ, Eckhauser FE. Diagnostic accuracy of selective 3-T MR neurography-guided retroperitoneal genitofemoral nerve blocks for the diagnosis of genitofemoral neuralgia. Radiology. 2017;285(1):176–85.

    Article  PubMed  Google Scholar 

  4. Dalili D, Isaac A, Fritz J. MRI-guided sacroiliac joint injections in children and adults: current practice and future developments. Skelet Radiol. 2023;52(5):951–65.

    Article  Google Scholar 

  5. Dalili D, Fritz J, Isaac A. 3D MRI of the hand and wrist: technical considerations and clinical applications. Semin Musculoskelet Radiol. 2021;25(3):501–13.

    Article  PubMed  Google Scholar 

  6. Khodarahmi I, Fritz J. The value of 3 Tesla field strength for musculoskeletal magnetic resonance imaging. Invest Radiol. 2021;56(11):749–63.

    Article  PubMed  Google Scholar 

  7. Khalilzadeh O, Fayad LM, Ahlawat S. 3D MR neurography. Semin Musculoskelet Radiol. 2021;25(3):409–17.

    Article  PubMed  Google Scholar 

  8. Khodarahmi I, Keerthivasan MB, Brinkmann IM, Grodzki D, Fritz J. Modern low-field MRI of the musculoskeletal system: practice considerations, opportunities, and challenges. Invest Radiol. 2023;58(1):76–87.

    Article  PubMed  Google Scholar 

  9. Poh F, Xi Y, Rozen SM, Scott KM, Hlis R, Chhabra A. Role of MR neurography in groin and genital pain: ilioinguinal, iliohypogastric, and genitofemoral neuralgia. AJR Am J Roentgenol. 2019;212(3):632–43.

    Article  PubMed  Google Scholar 

  10. Del Grande F, Guggenberger R, Fritz J. Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques. AJR Am J Roentgenol. 2021;216(3):704–17.

    Article  PubMed  Google Scholar 

  11. Fritz J, Guggenberger R, Del Grande F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques. AJR Am J Roentgenol. 2021;216(3):718–33.

    Article  PubMed  Google Scholar 

  12. Lin DJ, Walter SS, Fritz J. Artificial intelligence-driven ultra-fast superresolution MRI: 10-fold accelerated musculoskeletal turbo spin echo MRI within reach. Invest Radiol. 2023;58(1):28–42.

    Article  PubMed  Google Scholar 

  13. Murthy S, Fritz J. Metal artifact reduction MRI in the diagnosis of periprosthetic hip joint infection. Radiology. 2023;306(3):e220134.

    Article  PubMed  Google Scholar 

  14. Sonnow L, Gilson WD, Raithel E, Nittka M, Wacker F, Fritz J. Instrument visualization using conventional and compressed sensing SEMAC for interventional MRI at 3T. J Magn Reson Imaging. 2018;47(5):1306–15.

    Article  PubMed  Google Scholar 

  15. Fritz J, Fritz B, Thawait GK, Raithel E, Gilson WD, Nittka M, et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC. Skeletal Radiol. 2016;45(10):1345–56.

    Article  PubMed  Google Scholar 

  16. Khodarahmi I, Bonham LW, Weiss CR, Fritz J. Needle heating during interventional magnetic resonance imaging at 1.5- and 3.0-T field strengths. Invest Radiol. 2020;55(6):396–404.

    Article  PubMed  Google Scholar 

  17. Khodarahmi I, Rajan S, Sterling R, Koch K, Kirsch J, Fritz J. Heating of hip arthroplasty implants during metal artifact reduction MRI at 1.5- and 3.0-T field strengths. Invest Radiol. 2021;56(4):232–43.

    Article  PubMed  Google Scholar 

  18. Dalili D, Ahlawat S, Isaac A, Rashidi A, Fritz J. Selective MR neurography-guided anterior femoral cutaneous nerve blocks for diagnosing anterior thigh neuralgia: anatomy, technique, diagnostic performance, and patient-reported experiences. Skeletal Radiol. 2022;51(8):1649–58.

    Article  PubMed  Google Scholar 

  19. Dalili D, Isaac A, Rashidi A, Astrom G, Fritz J. Image-guided sports medicine and musculoskeletal tumor interventions: a patient-centered model. Semin Musculoskelet Radiol. 2020;24(3):290–309.

    Article  PubMed  Google Scholar 

  20. Fritz J, Niemeyer T, Clasen S, Wiskirchen J, Tepe G, Kastler B, et al. Management of chronic low back pain: rationales, principles, and targets of imaging-guided spinal injections. Radiographics. 2007;27(6):1751–71.

    Article  PubMed  Google Scholar 

  21. Fritz J, Weiss CR. The state-of-the-art of interventional magnetic resonance imaging: part 1. Top Magn Reson Imaging. 2018;27(1):1–2.

    Article  PubMed  Google Scholar 

  22. Filippiadis D, Efthymiou E, Tsochatzis A, Kelekis A, Prologo JD. Percutaneous cryoanalgesia for pain palliation: current status and future trends. Diagn Interv Imaging. 2021;102(5):273–8.

    Article  PubMed  Google Scholar 

  23. Reinpold W, Schroeder AD, Schroeder M, Berger C, Rohr M, Wehrenberg U. Retroperitoneal anatomy of the iliohypogastric, ilioinguinal, genitofemoral, and lateral femoral cutaneous nerve: consequences for prevention and treatment of chronic inguinodynia. Hernia. 2015;19(4):539–48.

    Article  CAS  PubMed  Google Scholar 

  24. Rab M, Ebmer J, Dellon AL. Anatomic variability of the ilioinguinal and genitofemoral nerve: implications for the treatment of groin pain. Plast Reconstr Surg. 2001;108(6):1618–238.

    Article  Google Scholar 

  25. Anloague PA, Huijbregts P. Anatomical variations of the lumbar plexus: a descriptive anatomy study with proposed clinical implications. J Man Manip Ther. 2009;17(4):e107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Daniels SP, Viers CD, Blaichman JI, Ross AB, Tang JY, Lee KS. US-guided musculoskeletal interventions of the body wall and core with MRI and US correlation. Radiographics. 2021;41(7):2011–28.

    Article  PubMed  Google Scholar 

  27. Cesmebasi A, Yadav A, Gielecki J, Tubbs RS, Loukas M. Genitofemoral neuralgia: a review. Clin Anat. 2015;28(1):128–35.

    Article  PubMed  Google Scholar 

  28. Bonham LW, Herati AS, McCarthy EF, Dellon AL, Fritz J. Diagnostic and interventional magnetic resonance neurography diagnosis of brachytherapy seed-mediated pudendal nerve injury: a case report. Transl Androl Urol. 2020;9(3):1442–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fritz J, Dellon AL, Williams EH, Belzberg AJ, Carrino JA. 3-Tesla high-field magnetic resonance neurography for guiding nerve blocks and its role in pain management. Magn Reson Imaging Clin N Am. 2015;23(4):533–45.

    Article  PubMed  Google Scholar 

  30. Fritz J, Fritz B, Dellon AL. Sacrotuberous ligament healing following surgical division during transgluteal pudendal nerve decompression: a 3-Tesla MR neurography study. Plos One. 2016;11(11):e0165239.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Storlie NR, Abbasi H. Self-reported female orgasm following serial sacroiliac joint injections. Cureus. 2021;13(7):e16737.

    PubMed  PubMed Central  Google Scholar 

  32. Labat JJ, Riant T, Robert R, Amarenco G, Lefaucheur JP, Rigaud J. Diagnostic criteria for pudendal neuralgia by pudendal nerve entrapment (Nantes criteria). Neurourol Urodyn. 2008;27(4):306–10.

    Article  PubMed  Google Scholar 

  33. Lefaucheur JP, Labat JJ, Amarenco G, Herbaut AG, Prat-Pradal D, Benaim J, et al. What is the place of electroneuromyographic studies in the diagnosis and management of pudendal neuralgia related to entrapment syndrome? Neurophysiol Clin. 2007;37(4):223–8.

    Article  PubMed  Google Scholar 

  34. Fritz J, Chhabra A, Wang KC, Carrino JA. Magnetic resonance neurography-guided nerve blocks for the diagnosis and treatment of chronic pelvic pain syndrome. Neuroimaging Clin N Am. 2014;24(1):211–34.

    Article  PubMed  Google Scholar 

  35. Fritz J, Bizzell C, Kathuria S, Flammang AJ, Williams EH, Belzberg AJ, et al. High-resolution magnetic resonance-guided posterior femoral cutaneous nerve blocks. Skeletal Radiol. 2013;42(4):579–86.

    Article  PubMed  Google Scholar 

  36. Joshi DH, Thawait GK, Del Grande F, Fritz J. MRI-guided cryoablation of the posterior femoral cutaneous nerve for the treatment of neuropathy-mediated sitting pain. Skeletal Radiol. 2017;46(7):983–7.

    Article  PubMed  Google Scholar 

  37. Feigl GC, Dreu M, Ulz H, Breschan C, Maier C, Likar R. Susceptibility of the genitofemoral and lateral femoral cutaneous nerves to complications from lumbar sympathetic blocks: is there a morphological reason? Br J Anaesth. 2014;112(6):1098–104.

    Article  CAS  PubMed  Google Scholar 

  38. Fritz J, Zolnoun D, Lee DA. Anatomic variability of the lateral femoral cutaneous nerve: Value of 3T MRI in identifying anomaly for surgical intervention. Microsurgery. 2017;37(2):165–8.

    Article  PubMed  Google Scholar 

  39. Dalili D, Ahlawat S, Rashidi A, Belzberg AJ, Fritz J. Cryoanalgesia of the anterior femoral cutaneous nerve (AFCN) for the treatment of neuropathy-mediated anterior thigh pain: anatomy and technical description. Skeletal Radiol. 2021;50(6):1227–36.

    Article  PubMed  Google Scholar 

  40. Kapural L, Naber J, Neal K, Burchell M. Cooled radiofrequency ablation of the articular sensory branches of the obturator and femoral nerves using fluoroscopy and ultrasound guidance: a large retrospective study. Pain Physician. 2021;24(5):E611–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Fritz.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalili, D., Isaac, A. & Fritz, J. Selective MR neurography–guided lumbosacral plexus perineural injections: techniques, targets, and territories. Skeletal Radiol 52, 1929–1947 (2023). https://doi.org/10.1007/s00256-023-04384-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04384-7

Keywords

Navigation