Skip to main content
Log in

Carbon-fiber-reinforced polyetheretherketone orthopedic implants in musculoskeletal and spinal tumors: imaging and clinical features

Skeletal Radiology Aims and scope Submit manuscript

Cite this article

Abstract

Carbon-fiber-reinforced polyetheretherketone (CFR-PEEK) orthopedic implants are gaining popularity in oncologic applications as they offer many potential advantages over traditional metallic implants. From an imaging perspective, this instrumentation allows for improved evaluation of adjacent anatomic structures during radiography, computed tomography (CT), and magnetic resonance imaging (MRI). This results in improved postoperative surveillance imaging quality as well as easier visualization of anatomy for potential image-guided percutaneous interventions (e.g., pain palliation injections, or ablative procedures for local disease control). CFR-PEEK devices are also advantageous in radiation oncology treatment due to their decreased imaging artifact during treatment planning imaging and decreased dose perturbation during radiotherapy delivery. As manufacturing processes for CFR-PEEK materials continue to evolve and improve, potential orthopedic applications in the spine and appendicular skeleton increase. An understanding of the unique properties of CFR-PEEK devices and their impact on imaging is valuable to radiologists delivering care to orthopedic oncology patients in both the diagnostic and interventional settings. This multidisciplinary review aims to provide a comprehensive insight into the radiologic, surgical, and radiation oncology impact of these innovative devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Hak DJ, Fader R, Baldini T, Chadayammuri VBS. Locking screw-plate interface stability in carbon-fibre reinforced polyetheretherketone proximal humerus plates. Int Orthop. 2017;41(9):1735–9.

    Article  Google Scholar 

  2. Hillock R, Howard S. Utility of carbon fiber implants in orthopedic surgery: literature review. Reconstr Rev. 2014;4(1).

  3. Van Nortwick SS, Yao J, Ladd AL. Titanium integration with bone, welding, and screw head destruction complicating hardware removal of the distal radius: report of 2 cases. J Hand Surg Am. 2012;37(7):1388–92.

    Article  Google Scholar 

  4. Vles GF, Brodermann MH, Roussot MA, Youngman J. Carbon-fiber-reinforced PEEK intramedullary nails defining the niche. Case Rep Orthop. 2019;2019:1538158.

    Google Scholar 

  5. Potter BK. From bench to bedside: radiolucent implants-better visualization or camouflaged gimmick? Clin Orthop Relat Res. 2022;480(3):461–3.

    Article  Google Scholar 

  6. Hsissou R, Seghiri R, Benzekri Z, et al. Polymer composite materials: a comprehensive review. Compos Struct. 2021;262: 113640.

    Article  CAS  Google Scholar 

  7. Steinberg EL, Rath E, Shlaifer A, Ofir C, et al. Carbon fiber reinforced PEEK Optima–a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.

    Article  CAS  Google Scholar 

  8. Zimel MN, Hwang S, Riedel ER, Healey JH. Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging. Skelet Radiol. 2015;44(9):1317–25.

    Article  Google Scholar 

  9. Spratt DE, Beeler WH, de Moraes FY, et al. An integrated multidisciplinary algorithm for the management of spinal metastases: an International Spine Oncology Consortium report. Lancet Oncol. 2017;18(12):e720–30.

    Article  Google Scholar 

  10. Charest-Morin R, Fisher CG, Sahgal A, et al. Primary bone tumor of the spine-an evolving field: what a general spine surgeon should know. Glob Spine J. 2019;9(1 Suppl):108S-116S.

    Article  Google Scholar 

  11. Jia Y, Zhao L, Cheng C, et al. Dose perturbation effect of metallic spinal implants in proton beam therapy. J Appl Clin Med Phys. 2015;16(5):333–43.

    Article  Google Scholar 

  12. Boriani S, Tedesco G, Ming L, et al. Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: a preliminary report. Eur Spine J. 2018;27(4):874–81.

    Article  Google Scholar 

  13. Tedesco G, Gasbarrini A, Bandiera, et al. Composite PEEK/Carbon fiber implants can increase the effectiveness of radiotherapy in the management of spine tumors. J Spine Surg. 2017;3(3):323–9.

    Article  Google Scholar 

  14. Boriani S, Pipola V, Cecchinato R, et al. Composite PEEK/carbon fiber rods in the treatment for bone tumors of the cervical spine: a case series. Eur Spine J. 2020;29(12):3229–36.

    Article  Google Scholar 

  15. Cofano F, Di Perna G, Monticelli M, et al. Carbon fiber reinforced vs titanium implants for fixation in spinal metastases: a comparative clinical study about safety and effectiveness of the new “carbon-strategy.” J Clin Neurosci. 2020;75:106–11.

    Article  CAS  Google Scholar 

  16. Adler D, Akbar M, Spicher A, et al. Biomechanical study of a novel, expandable, non-metallic and radiolucent CF/PEEK vertebral body replacement (VBR). Materials (Basel). 2019;12(17):2732.

    Article  CAS  Google Scholar 

  17. Milavec H, Kellner C, Ravikumar N, et al. First clinical experience with a carbon fibre reinforced PEEK composite plating system for anterior cervical discectomy and fusion. J Funct Biomater. 2019;10(3):29.

    Article  CAS  Google Scholar 

  18. Bruner HJ, Guan Y, Yoganandan N, et al. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. J Neurosurg Spine. 2010;13(6):766–72.

    Article  Google Scholar 

  19. Uri O, Folman Y, Laufer G, Behrbalk E. A novel spine fixation system made entirely of carbon-fiber-reinforced PEEK composite: an in vitro mechanical evaluation. Adv Orthop. 2020;2020:4796136.

    Google Scholar 

  20. Lindtner RA, Schmid R, Nydegger T, et al. Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading. Eur Spine J. 2018;27(8):1775–84.

    Article  Google Scholar 

  21. Oikonomidis S, Greven J, Bredow J, et al. Biomechanical effects of posterior pedicle screw-based instrumentation using titanium versus carbon fiber reinforced PEEK in an osteoporotic spine human cadaver model. Clin Biomech (Bristol, Avon). 2020;80: 105153.

    Article  Google Scholar 

  22. Neal MT, Richards AE, Curley KL, et al. Carbon fiber-reinforced PEEK instrumentation in the spinal oncology population: a retrospective series demonstrating technique, feasibility, and clinical outcomes. Neurosurg Focus. 2021;50(5):E13.

    Article  Google Scholar 

  23. Di Perna G, Cofano F, Mantovani C, Badellino S, et al. Separation surgery for metastatic epidural spinal cord compression: a qualitative review. J Bone Oncol. 2020;25: 100320.

    Article  Google Scholar 

  24. Shen FH, Gasbarrini A, Lui DF, Reynolds J, et al. Integrated custom composite polyetheretherketone/carbon fiber (PEEK/CF) vertebral body replacement (VBR) in the treatment of bone tumors of the spine: a preliminary report from a multicenter study. Spine (Phila Pa 1976). 2022;47(3):252–60.

    Article  Google Scholar 

  25. Laux CJ, Hodel SM, Farshad M, Muller DA. Carbon fibre/polyether ether ketone (CF/PEEK) implants in orthopaedic oncology. World J Surg Oncol. 2018;16(1):241.

    Article  Google Scholar 

  26. ESMO/European Sarcoma Network Working Group. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii113-2.

    Google Scholar 

  27. ESMO/European Sarcoma Network Working Group. Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii102-12.

    Google Scholar 

  28. Greenberg DD, Crawford B. Surveillance strategies for sarcoma: results of a survey of Members of the Musculoskeletal Tumor Society. Sarcoma. 2016;2016:8289509.

    Article  Google Scholar 

  29. Puri A, Ranganathan P, Gulia A, Crasto S, et al. Does a less intensive surveillance protocol affect the survival of patients after treatment of a sarcoma of the limb? Updated results of the randomized TOSS study. Bone Joint J. 2018;100-B(2):262–8.

    Article  CAS  Google Scholar 

  30. Weeden S, Grimer RJ, Cannon SR, Taminiau AH, et al. The effect of local recurrence on survival in resected osteosarcoma. Eur J Cancer. 2001;37(1):39–46.

    Article  CAS  Google Scholar 

  31. Grimer RJ, Aydin BK, Wafa H, Carter SR, et al. Very long-term outcomes after endoprosthetic replacement for malignant tumours of bone. Bone Joint J. 2016;98-B(6):857–64.

    Article  CAS  Google Scholar 

  32. Joo MW, Kang YK, Ogura K, Iwata S, et al. Post-radiation sarcoma: a study by the Eastern Asian Musculoskeletal Oncology Group. PLoS ONE. 2018;13(10): e0204927.

    Article  Google Scholar 

  33. Amendola BE, Amendola MA, McClatchey KD, Miller CH Jr. Radiation-associated sarcoma: a review of 23 patients with postradiation sarcoma over a 50-year period. Am J Clin Oncol. 1989;12(5):411–5.

    Article  CAS  Google Scholar 

  34. Erel E, Vlachou E, Athanasiadou M, Hassan S, et al. Management of radiation-induced sarcomas in a tertiary referral centre: a review of 25 cases. Breast. 2010;19(5):424–7.

    Article  CAS  Google Scholar 

  35. Gladdy RA, Quin L, Moraco N, Edgar MA, et al. Do radiation-associated soft tissue sarcomas have the same prognosis as sporadic soft tissue sarcomas? J Clin Oncol. 2010;28(12):2064–9.

    Article  Google Scholar 

  36. Chapelier AR, Bacha EA, de Montpreville VT, Dulmet EM, et al. Radical resection of radiation-induced sarcoma of the chest wall: report of 15 cases. Ann Thorac Surg. 1997;63(1):214–9.

    Article  CAS  Google Scholar 

  37. Neuhaus SJ, Pinnock N, Giblin V, Fisher C, et al. Treatment and outcome of radiation-induced soft-tissue sarcomas at a specialist institution. Eur J Surg Oncol. 2009;35(6):654–9.

    Article  CAS  Google Scholar 

  38. Goudriaan WA, Tordoir RL, Broekhuis D, van der Wal RJP. Early failure of a carbon-fiber-reinforced polyetheretherketone distal femur plate: a case report. JBJS Case Connect. 2020;10(3):e20.00041.

    Article  Google Scholar 

  39. Mellon MB. Late recognition of an early catastrophic failure of a carbon fiber reinforced distal femoral plate: a case report. Trauma Case Rep. 2021;34: 100493.

    Article  Google Scholar 

  40. Loeb AE, Mitchell SL, Osgood GM, Shafiq B. Catastrophic failure of a carbon-fiber-reinforced polyetheretherketone tibial intramedullary nail: a case report. JBJS Case Connect. 2018;8(4): e83.

    Article  Google Scholar 

  41. Collis PN, Clegg TE, Seligson D. The invisible nail: a technique report of treatment of a pathological humerus fracture with a radiolucent intramedullary nail. Injury. 2011;42(4):424–6.

    Article  Google Scholar 

  42. Tarallo L, Mugnai R, Adani R, Zambianchi F, Catani F. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases. J Orthop Traumatol. 2014;15(4):277–83.

    Article  Google Scholar 

  43. Di Maggio B, Sessa P, Mantelli P, Maniscalco P, et al. PEEK radiolucent plate for distal radius fractures: multicentre clinical results at 12 months follow up. Injury. 2017;48(Suppl 3):S34–8.

    Article  Google Scholar 

  44. Perugia D, Guzzini M, Mazza D, Iorio C, et al. Comparison between carbon-PEEK volar locking plates and titanium volar locking plates in the treatment of distal radius fractures. Injury. 2017;48(Suppl 3):S24–9.

    Article  Google Scholar 

  45. Pinter ZW, Smith KS, Hudson PW, Jones CW, et al. A retrospective case series of carbon fiber plate fixation of ankle fractures. Foot Ankle Spec. 2018;11(3):223–9.

    Article  Google Scholar 

  46. Gallagher EA, Lamoriniere S, McGarry P. Finite element investigation into the use of carbon fibre reinforced PEEK laminated composites for distal radius fracture fixation implants. Med Eng Phys. 2019;67:22–32.

    Article  Google Scholar 

  47. Takashima K, Nakahara I, Uemura K, Hamada H, et al. Clinical outcomes of proximal femoral fractures treated with a novel carbon fiber-reinforced polyetheretherketone intramedullary nail. Injury. 2020;51(3):678–82.

    Article  Google Scholar 

  48. Hak DJ, McElvany M. Removal of broken hardware. J Am Acad Orthop Surg. 2008;16(2):113–20.

    Article  Google Scholar 

  49. Takayanagi A, Siddiqi I, Ghanchi H, Lischalk J, et al. Radiolucent carbon fiber-reinforced implants for treatment of spinal tumors-clinical, radiographic, and dosimetric considerations. World Neurosurg. 2021;152:61–70.

    Article  Google Scholar 

  50. Ringel F, Ryang Y, Krischke JS, Muller BS, et al. Radiolucent carbon fiber-reinforced pedicle screws for treatment of spinal tumors: advantages for radiation planning and follow-up imaging. World Neurosurg. 2017;105:294–301.

    Article  Google Scholar 

  51. Kratzig T, Mende KC, Mohme M, Kniep H, et al. Carbon fiber-reinforced PEEK versus titanium implants: an in vitro comparison of susceptibility artifacts in CT and MR imaging. Neurosurg Rev. 2021;44(4):2163–70.

    Article  Google Scholar 

  52. Caforio M, Perugia D, Colombo M, Calori GM, et al. Preliminary experience with Piccolo Composite™, a radiolucent distal fibula plate, in ankle fractures. Injury. 2014;45(Suppl 6):S36–8.

    Article  Google Scholar 

  53. Kojic N, Rangger C, Ozgun C, Lojpur, et al. Carbon-fibre-reinforced PEEK radiolucent intramedullary nail for humeral shaft fracture fixation: technical features and a pilot clinical study. Injury. 2017;48(Suppl 5):S8–11.

    Article  Google Scholar 

  54. Brantigan JW, Steffee AD, Lewis ML, Quinn LM, Persenaire JM. Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine (Phila Pa 1976). 2000;25(11):1437–46.

    Article  CAS  Google Scholar 

  55. Delaney FT, Denton H, Dodds M, Kavanaugh EC. Multimodal imaging of composite carbon fiber-based implants for orthopedic spinal fixation. Skelet Radiol. 2021;50(5):1039–45.

    Article  Google Scholar 

  56. Huber FA, Sprengel K, Muller L, Graf LC, et al. Comparison of different CT metal artifact reduction strategies for standard titanium and carbon-fiber reinforced polymer implants in sheep cadavers. BMC Med Imaging. 2021;21(1):29.

    Article  Google Scholar 

  57. Zoccali C, Soriana A, Rossi B, Salducca N, et al. The Carbofix™ “Piccolo proximal femur nail”: a new perspective for treating proximal femur lesion. A technique report. J Orthop. 2016;13(4):343–6.

    Article  Google Scholar 

  58. Hargreaves BA, Worters PW, Pauly KB, Pauly JM, et al. Metal-induced artifacts in MRI. AJR Am J Roentgenol. 2011;197(3):547–55.

    Article  Google Scholar 

  59. Fleege C, Makowski M, Rauschmann M, Fraunhoffer KL, et al. Carbon fiber-reinforced pedicle screws reduce artifacts in magnetic resonance imaging of patients with lumbar spondylodesis. Sci Rep. 2020;10(1):16094.

    Article  CAS  Google Scholar 

  60. Rutz HP, Weber DC, Sugahara S, Timmermann B, et al. Extracranial chordoma: outcome in patients treated with function-preserving surgery followed by spot-scanning proton beam irradiation. Int J Radiat Oncol Biol Phys. 2007;67(2):512–20.

    Article  Google Scholar 

  61. Xin-ye N, Xiao-bin T, Chang-ran G, Da C. The prospect of carbon fiber implants in radiotherapy. J Appl Clin Med Phys. 2012;13(4):3821.

    Article  Google Scholar 

  62. Nevelsky A, Borzov E, Daniel S, Bar-Deroma R. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution. J Appl Clin Med Phys. 2017;18(2):62–8.

    Article  Google Scholar 

  63. Soriani A, Strigari L, Petrongari MG, Anelli V, et al. The advantages of carbon fiber based orthopedic devices in patients who have to undergo radiotherapy. Acta Biomed. 2020;91(3): e2020057.

    CAS  Google Scholar 

  64. Laux CJ, Villefort C, Ehrbar S, Wilke L, et al. Carbon fiber/polyether ether ketone (CF/PEEK) implants allow for more effective radiation in long bones. Materials (Basel). 2020;13(7):1754.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremiah R. Long.

Ethics declarations

Conflict of interest

MAK is a consultant for Carbofix, NuVasive, and Medtronic. The remaining authors declare they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Carbon-fiber-reinforced polyetheretherketone orthopedic implants have substantially less imaging artifact than metal implants and are available for spine and appendicular applications.

• Implants made from carbon-fiber-reinforced polyetheretherketone may be advantageous for postoperative imaging surveillance and radiation therapy in the oncologic population.

• Familiarity with the physical properties, clinical applications, and imaging appearances of carbon-fiber-reinforced polyetheretherketone implants is valuable for radiologists providing care to oncology patients.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, J.R., Kalani, M.A., Goulding, K.A. et al. Carbon-fiber-reinforced polyetheretherketone orthopedic implants in musculoskeletal and spinal tumors: imaging and clinical features. Skeletal Radiol 52, 393–404 (2023). https://doi.org/10.1007/s00256-022-04069-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-022-04069-7

Keywords

Navigation