Skip to main content
Log in

The concept of ring of injuries: evaluation in ankle trauma

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Radiographs are first-line imaging in ankle trauma but lack sensitivity to detect ligamentous injuries and undisplaced fractures. Our hypothesis was that ankle injuries occur in predefined sequences along two osteoligamentous rings, so that occult injuries non-visible on initial radiographs can be predicted. We, therefore, aimed to validate a ring model of progressive damages in the interpretation of ankle trauma radiographs.

Methods

This study retrospectively enrolled 277 adult patients that presented an acute fibular fracture on ankle radiographs between May and November 2019. Four different types of fibula fracture were differentiated, each being considered to correspond to a different mechanism of injury. Patients were classified into four groups, upon the appearance of their fibular fracture. Then, injuries to the distal tibiofibular syndesmosis, medial malleolus, and deltoid ligament (medial clear space) were assessed in each patient radiographs. Traumatic injuries were independently evaluated by a resident and an experienced MSK radiologist. For each patient, observed features were compared to those predicted by the ring concept. Inter- and intraobserver agreements were calculated.

Results

Injuries were observed according to the predictable sequence in 266 of the 277 patients (96%). In the 11 remaining patients, discordances were presumably due to undisplaced injuries to the syndesmosis or deltoid ligament. Agreements were considered very good for each evaluated item.

Conclusion

The Lauge-Hansen ring concept was found to be highly accurate and reproducible for radiographic assessment of ankle injuries. Discordances to the predicted sequence might reflect occult injuries, especially of the syndesmosis or deltoid ligament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AITFL:

Anteroinferior tibiofibular ligament

MCS:

Medial clear space

MOI:

Mechanisms of injury

PER:

Pronation, external rotation

PITFL:

Posteroinferior tibiofibular ligament

SER:

Supination, external rotation

SAD:

Supination, adduction

PAB:

Pronation, abduction

TFCS:

Tibiofibular clear space

TFS:

Tibiofibular syndesmosis

References

  1. Barnett CH, Napier JR. The axis of rotation at the ankle joint in man; its influence upon the form of the talus and the mobility of the fibula. J Anat. 1952;86(1):1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Funk JR. Ankle injury mechanisms: lessons learned from cadaveric studies. Clin Anat. 2011;24(3):350–61.

    Article  PubMed  Google Scholar 

  3. Michelson JD. Ankle fractures resulting from rotational injuries. J Am Acad Orthop Surg. 2003;11(6):403–12.

    Article  PubMed  Google Scholar 

  4. Lauge-Hansen N. Fractures of the ankle. II. Combined experimental-surgical and experimental-roentgenologic investigations. Arch Surg. 1950;60(5):957–85.

    Article  CAS  Google Scholar 

  5. Lauge-Hansen N. Fractures of the ankle. IV. Clinical use of genetic roentgen diagnosis and genetic reduction. AMA Arch Surg. 1952;64(4):488–500.

    Article  CAS  PubMed  Google Scholar 

  6. Lauge-Hansen N. Fractures of the ankle. III. Genetic roentgenologic diagnosis of fractures of the ankle. Am J Roentgenol Radium Ther Nucl Med. 1954;71(3):456–71.

    CAS  PubMed  Google Scholar 

  7. Warner SJ, Garner MR, Hinds RM, Helfet DL, Lorich DG. Correlation between the Lauge-Hansen classification and ligament injuries in ankle fractures. J Orthop Trauma. 2015;29(12):574–8.

    Article  PubMed  Google Scholar 

  8. Phillips RS, Balmer GA, Monk CJ. The external rotation fracture of the fibular malleolus. Br J Surg. 1969;56(11):801–6.

    Article  CAS  PubMed  Google Scholar 

  9. Pankovich AM. Fractures of the fibula proximal to the distal tibiofibular syndesmosis. J Bone Joint Surg Am. 1978;60(2):221–9.

    Article  CAS  PubMed  Google Scholar 

  10. Okanobo H, Khurana B, Sheehan S, Duran-Mendicuti A, Arianjam A, Ledbetter S. Simplified diagnostic algorithm for Lauge-Hansen classification of ankle injuries. Radiographics. 2012;32(2):E71-84.

    Article  PubMed  Google Scholar 

  11. Hermans JJ, Wentink N, Beumer A, Hop WC, Heijboer MP, Moonen AF, Ginai AZ. Correlation between radiological assessment of acute ankle fractures and syndesmotic injury on MRI. Skeletal Radiol. 2012;41(7):787–801.

    Article  CAS  PubMed  Google Scholar 

  12. Mengiardi B, Pinto C, Zanetti M. Medial collateral ligament complex of the ankle: MR imaging anatomy and findings in medial instability. Semin Musculoskelet Radiol. 2016;20(1):91–103.

    Article  PubMed  Google Scholar 

  13. Deborde E, Bierry G. Ankle and distal tibia. In: Bierry G, editor. Skeletal trauma - a mechanism-based approach of imaging. London: Academic Press; 2021. p. 361–406.

    Google Scholar 

  14. Gardner MJ, Demetrakopoulos D, Briggs SM, Helfet DL, Lorich DG. The ability of the Lauge-Hansen classification to predict ligament injury and mechanism in ankle fractures: an MRI study. J Orthop Trauma. 2006;20(4):267–72.

    Article  PubMed  Google Scholar 

  15. Hanson JA, Fotoohi M, Wilson AJ. Maisonneuve fracture of the fibula: implications for imaging ankle injury. AJR Am J Roentgenol. 1999;173(3):702.

    Article  CAS  PubMed  Google Scholar 

  16. Hinds RM, Schottel PC, Berkes MB, Little MT, Helfet DL, Lorich DG. Evaluation of Lauge-Hansen designation of Weber C fractures. J Foot Ankle Surg. 2014;53(4):434–9.

    Article  PubMed  Google Scholar 

  17. White TO, Bugler KE. Ankle fractures. In: Court-Brown CM, Heckmann JD, McQueen MM, Ricci WM, Tornetta P, editors. Rockwood and Green’s fractures in adults. Philadelphia: Wolters Kluwer; 2015. p. 2541–92.

    Google Scholar 

  18. Gisev N, Bell JS, Chen TF. Interrater agreement and interrater reliability: key concepts, approaches, and applications. Res Social Adm Pharm. 2013;9(3):330–8.

    Article  PubMed  Google Scholar 

  19. Lambert LA, Falconer L, Mason L. Ankle stability in ankle fracture. J Clin Orthop Trauma. 2020;11(3):375–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rammelt S, Bartonicek J, Kroker L, Neumann AP. Surgical fixation of quadrimalleolar fractures of the ankle. J Orthop Trauma. 2021;35(6):e216–22.

    Article  PubMed  Google Scholar 

  21. German J, Guillermo A, Rammelt S, Leandro C, Luciano M. Quadrimalleolar fractures of the ankle: think 360°—a step-by-step guide on evaluation and fixation. J Foot Ankle Surg (Asia Pacific). 2021;8(4):193–200.

    Article  Google Scholar 

  22. Bolin H. The fibula and its relationship the tibia and talus in injuries of the ankle due to forced external rotation. Acta radiol. 1961;56:439–48.

    Article  CAS  PubMed  Google Scholar 

  23. Van Heest TJ, Lafferty PM. Injuries to the ankle syndesmosis. J Bone Joint Surg Am. 2014;96(7):603–13.

    Article  PubMed  Google Scholar 

  24. Donohoe S, Alluri RK, Hill JR, Fleming M, Tan E, Marecek G. Impact of computed tomography on operative planning for ankle fractures involving the posterior malleolus. Foot Ankle Int. 2017;38(12):1337–42.

    Article  PubMed  Google Scholar 

  25. Rammelt S, Bartonicek J, Neumann AP, Kroker L. Fractures of the anterolateral tibial rim: the fourth malleolus. Unfallchirurg. 2021;124(3):212–21.

    Article  PubMed  Google Scholar 

  26. Rammelt S, Boszczyk A. Computed tomography in the diagnosis and treatment of ankle fractures: a critical analysis review. JBJS Rev. 2018;6(12): e7.

    Article  PubMed  Google Scholar 

  27. Haraguchi N, Armiger RS. A new interpretation of the mechanism of ankle fracture. J Bone Joint Surg Am. 2009;91(4):821–9.

    Article  PubMed  Google Scholar 

  28. Boszczyk A, Fudalej M, Kwapisz S, Klimek U, Maksymowicz M, Kordasiewicz B, Rammelt S. Ankle fracture - correlation of Lauge-Hansen classification and patient reported fracture mechanism. Forensic Sci Int. 2018;282:94–100.

    Article  PubMed  Google Scholar 

  29. Rodriguez EK, Kwon JY, Herder LM, Appleton PT. Correlation of AO and Lauge-Hansen classification systems for ankle fractures to the mechanism of injury. Foot Ankle Int. 2013;34(11):1516–20.

    Article  PubMed  Google Scholar 

  30. Cabuk H, Celebi F, Imren Y, Dedeoglu SS, Kir MC, Uyanik AF, Gurbuz H. Compatibility of Lauge-Hansen classification between plain radiographs and magnetic resonance imaging in ankle fractures. J Foot Ankle Surg. 2018;57(4):712–5.

    Article  PubMed  Google Scholar 

  31. Nielsen JO, Dons-Jensen H, Sorensen HT. Lauge-Hansen classification of malleolar fractures. An assessment of the reproducibility in 118 cases. Acta Orthop Scand. 1990;61(5):385–7.

    Article  CAS  PubMed  Google Scholar 

  32. Verhage SM, Rhemrev SJ, Keizer SB, Quarles van Ufford HM, Hoogendoorn JM. Interobserver variation in classification of malleolar fractures. Skeletal Radiol. 2015;44(10):1435–9.

    Article  CAS  PubMed  Google Scholar 

  33. Rasmussen S, Madsen PV, Bennicke K. Observer variation in the Lauge-Hansen classification of ankle fractures. Precision improved by instruction, Acta Orthop Scand. 1993;64(6):693–4.

    CAS  PubMed  Google Scholar 

  34. Liu Y, Lu H, Xu H, Xie W, Chen X, Fu Z, Zhang D, Jiang B. Characteristics and classification of medial malleolar fractures. Bone Joint J. 2021;103-B(5):931–8.

    Article  PubMed  Google Scholar 

  35. Birnie MFN, van Schilt KLJ, Sanders FRK, Kloen P, Schepers T. Anterior inferior tibiofibular ligament avulsion fractures in operatively treated ankle fractures: a retrospective analysis. Arch Orthop Trauma Surg. 2019;139(6):787–93.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Corte-Real N, Caetano J. Ankle and syndesmosis instability: consensus and controversies. EFORT Open Rev. 2021;6(6):420–31.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vogl TJ, Hochmuth K, Diebold T, Lubrich J, Hofmann R, Stockle U, Sollner O, Bisson S, Sudkamp N, Maeurer J, Haas N, Felix R. Magnetic resonance imaging in the diagnosis of acute injured distal tibiofibular syndesmosis. Invest Radiol. 1997;32(7):401–9.

    Article  CAS  PubMed  Google Scholar 

  38. Rammelt S, Obruba P. An update on the evaluation and treatment of syndesmotic injuries. Eur J Trauma Emerg Surg. 2015;41(6):601–14.

    Article  CAS  PubMed  Google Scholar 

  39. Grossterlinden LG, Hartel M, Yamamura J, Schoennagel B, Burger N, Krause M, Spiro A, Hoffmann M, Lehmann W, Rueger JM, Rupprecht M. Isolated syndesmotic injuries in acute ankle sprains: diagnostic significance of clinical examination and MRI. Knee Surg Sports Traumatol Arthrosc. 2016;24(4):1180–6.

    Article  PubMed  Google Scholar 

  40. Lalezari S, Amrami KK, Tubbs RS, Spinner RJ. Interosseous membrane: the anatomic basis for combined ankle and common fibular (peroneal) nerve injuries. Clin Anat. 2012;25(3):401–6.

    Article  PubMed  Google Scholar 

  41. Mait AR, Forman JL, Nie B, Donlon JP, Mane A, Forghani AR, Anderson RB, Cooper MT, Kent RW. Propagation of syndesmotic injuries during forced external rotation in flexed cadaveric ankles. Orthop J Sports Med. 2018;6(6):2325967118781333.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault Willaume.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolai, C., Bierry, G., Faruch-Bilfeld, M. et al. The concept of ring of injuries: evaluation in ankle trauma. Skeletal Radiol 51, 2027–2037 (2022). https://doi.org/10.1007/s00256-022-04062-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-022-04062-0

Keywords

Navigation