Skip to main content

Advertisement

Log in

The diagnostic value of susceptibility-weighted imaging for identifying acute intraarticular hemorrhages

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the diagnostic performance of susceptibility-weighted imaging (SWI) in identifying acute intraarticular hemorrhages and differentiating blood from other types of joint effusions.

Methods

Thirty-two patients (21 men, 11 women; mean age 38.7 ± 16.5 SD) clinically suspected of having joint effusion were prospectively included. All the patients underwent both conventional MRI and SWI. Two radiologists independently reviewed the conventional MRI images and scored the likelihood of intraarticular hemorrhage using a 5-level scoring system. Immediately thereafter, SWI images of each patient were also provided for the radiologists, and the scoring was repeated evaluating the conventional MRI and SWI images together. The patients underwent joint aspiration or surgical operation as the reference standard. The area under the curve (AUC) of conventional MRI and conventional MRI + SWI methods were calculated and compared. The weighted kappa analysis was used to evaluate the interobserver agreement.

Results

Traumatic knee injury comprised the majority of study sample. Eighteen out of 32 of the patients were proven to have intraarticular hemorrhage. Using the conventional MRI, reader 1 and 2 achieved AUCs of 0.67 (p = 0.09) and 0.53 (p = 0.76), respectively. Following the addition of SWI, reader 1 and 2 achieved AUCs of 0.96 (p = 0.0001) and 0.95 (p = 0.0001), respectively, and interobserver agreement improved from Κ = 0.61 to Κ = 0.93. Accordingly, difference between the AUCs was 0.28 (p = 0.003) and 0.42 (p = 0.0001) for reader 1 and 2, respectively.

Conclusions

If confirmed by future studies, SWI enables the reliable and accurate diagnosis of acute intraarticular hemorrhages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pope T, Bloem HL, Beltran J, Morrison WB, Wilson DJ. Musculoskeletal imaging: Elsevier Health Sciences; 2014.

  2. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 1997;204(1):272–7.

    Article  CAS  Google Scholar 

  3. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol. 2009;30(1):19–30.

    Article  CAS  Google Scholar 

  4. Lipton ML. Totally accessible MRI: a user’s guide to principles, technology, and applications: Springer Science & Business Media; 2010.

  5. Wu Z, Li S, Lei J, An D, Haacke EM. Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging. AJNR Am J Neuroradiol. 2010;31(7):1302–10.

    Article  CAS  Google Scholar 

  6. Nataraj P, Svojsik M, Sura L, Curry K, Bliznyuk N, Rajderkar D, et al. Comparing head ultrasounds and susceptibility-weighted imaging for the detection of low-grade hemorrhages in preterm infants. J Perinatol. 2021;41(4):736–42.

    Article  CAS  Google Scholar 

  7. Intrapiromkul J, Northington F, Huisman TA, Izbudak I, Meoded A, Tekes A. Accuracy of head ultrasound for the detection of intracranial hemorrhage in preterm neonates: comparison with brain MRI and susceptibility-weighted imaging. J Neuroradiol = Journal de neuroradiologie. 2013;40(2):81–8.

  8. Tong KA, Ashwal S, Holshouser BA, Shutter LA, Herigault G, Haacke EM, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology. 2003;227(2):332–9.

    Article  Google Scholar 

  9. Tong KA, Ashwal S, Holshouser BA, Nickerson JP, Wall CJ, Shutter LA, et al. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol. 2004;56(1):36–50.

    Article  Google Scholar 

  10. Wycliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke EM, Kido DK. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magnet Resonance Imaging : JMRI. 2004;20(3):372–7.

    Article  Google Scholar 

  11. Li GF, Wu YL, Wang S, Shi YH, Zhao R, Liu FD, et al. Previous chronic symptomatic and asymptomatic cerebral hemorrhage in patients with acute ischemic stroke. Neuroradiology. 2019;61(1):103–7.

    Article  Google Scholar 

  12. Thamburaj K, Soni A, Frasier LD, Tun KN, Weber SR, Dias MS. Susceptibility-weighted imaging of retinal hemorrhages in abusive head trauma. Pediatr Radiol. 2019;49(2):210–6.

    Article  Google Scholar 

  13. Gencturk M, Cam I, Koksel Y, McKinney AM. Role of susceptibility-weighted imaging in detecting retinal hemorrhages in children with head trauma. Clinical neuroradiology. 2021;31(3):611–7.

    Article  Google Scholar 

  14. Chen H, Wang G, Wang X, Gao Y, Liang J, Wang J. Diagnostic value of susceptibility-weighted imaging for endometrioma: preliminary results from a retrospective analysis. Acta radiologica (Stockholm, Sweden : 1987). 2021:2841851211022495.

  15. Khurana S, Sahoo P, Kapila M, Mittal S, Mahajan M, Saha I, et al. Susceptibility weighted with quantitative phase magnetic resonance imaging in differentiation of various stages of hemorrhage and calcification in female pelvic pathologies: a preliminary study. J Comput Assist Tomogr. 2017;41(4):586–91.

    Article  Google Scholar 

  16. Martín-Noguerol T, Montesinos P, Casado-Verdugo OL, Beltrán LS, Luna A. Susceptibility weighted imaging for evaluation of musculoskeletal lesions. Eur J Radiol. 2021;138:109611.

  17. Akyuz B, Polat AV, Ozturk M, Aslan K, Tomak L, Selcuk MB. Contribution of 3-T susceptibility-weighted MRI to detection of intraarticular hemosiderin accumulation in patients with hemophilia. AJR Am J Roentgenol. 2018;210(5):1141–7.

    Article  Google Scholar 

  18. Sieron DA, Drakopoulos D, Mitrakovic M, Tombarkiewicz M, Knap D, Platzek I, et al. Assessment of 3-T MRI using susceptibility-weighted imaging to detect and evaluate intra- or periarticular blood metabolites and meniscal tears of the knee. Pol J Radiol. 2019;84:e340–6.

    Article  Google Scholar 

  19. Park SH, Goo JM, Jo C-H. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol. 2004;5(1):11–8.

    Article  Google Scholar 

  20. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.

    Article  CAS  Google Scholar 

  21. Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull. 1968;70(4):213–20.

    Article  CAS  Google Scholar 

  22. Nörenberg D, Armbruster M, Bender YN, Walter T, Ebersberger HU, Diederichs G, et al. Diagnostic performance of susceptibility-weighted magnetic resonance imaging for the assessment of sub-coracoacromial spurs causing subacromial impingement syndrome. Eur Radiol. 2017;27(3):1286–94.

    Article  Google Scholar 

  23. Nörenberg D, Ebersberger HU, Walter T, Ockert B, Knobloch G, Diederichs G, et al. Diagnosis of calcific tendonitis of the rotator cuff by using susceptibility-weighted MR imaging. Radiology. 2016;278(2):475–84.

    Article  Google Scholar 

  24. Deppe D, Hermann KG, Proft F, Poddubnyy D, Radny F, Protopopov M, et al. CT-like images of the sacroiliac joint generated from MRI using susceptibility-weighted imaging (SWI) in patients with axial spondyloarthritis. RMD Open. 2021;7(2).

  25. Bender YY, Diederichs G, Walter TC, Wagner M, Liebig T, Rickert M, et al. Differentiation of osteophytes and disc herniations in spinal radiculopathy using susceptibility-weighted magnetic resonance imaging. Invest Radiol. 2017;52(2):75–80.

    Article  Google Scholar 

  26. Chen W, Zhao J, Wen Y, Xie B, Zhou X, Guo L, et al. Accuracy of 3-T MRI using susceptibility-weighted imaging to detect meniscal tears of the knee. Knee Surg Sports Traumatol. 2015;23(1):198–204.

    Article  Google Scholar 

  27. Lombardi M, Cardenas AC. Hemarthrosis. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.; 2021.

  28. Salmela MB, Krishna SH, Martin DJ, Roshan SK, McKinney AM, Tore HG, et al. All that bleeds is not black: susceptibility weighted imaging of intracranial hemorrhage and the effect of T1 signal. Clin Imaging. 2017;41:69–72.

    Article  Google Scholar 

  29. Ryu KN, Jaovisidha S, De Maeseneer M, Jacobson J, Sartoris DJ, Resnick D. Evolving stages of lipohemarthrosis of the knee. Sequential magnetic resonance imaging findings in cadavers with clinical correlation. Invest Radiol. 1997;32(1):7–11.

    Article  CAS  Google Scholar 

  30. Lugo-Olivieri CH, Scott WW Jr, Zerhouni EA. Fluid-fluid levels in injured knees: do they always represent lipohemarthrosis? Radiology. 1996;198(2):499–502.

    Article  CAS  Google Scholar 

  31. Davis DL, Vachhani P. Traumatic extra-capsular and intra-capsular floating fat: fat-fluid levels of the knee revisited. J Clin Imaging Sci. 2015;5:60.

    Article  Google Scholar 

  32. Bonnefoy O, Diris B, Moinard M, Aunoble S, Diard F, Hauger O. Acute knee trauma: role of ultrasound. Eur Radiol. 2006;16(11):2542–8.

    Article  Google Scholar 

  33. Lee JH, Weissman BN, Nikpoor N, Aliabadi P, Sosman JL. Lipohemarthrosis of the knee: a review of recent experiences. Radiology. 1989;173(1):189–91.

    Article  CAS  Google Scholar 

  34. Rippey J. Ultrasound for knee effusion: lipohaemarthrosis and tibial plateau fracture. Australas J Ultrasound Med. 2014;17(4):159–66.

    Article  Google Scholar 

  35. Lavelle LP, Dunne RM, Carroll AG, Malone DE. Evidence-based practice of radiology. Radiographics: a review publication of the Radiological Society of North America, Inc. 2015;35(6):1802–13.

  36. Enzmann DR. Radiology’s value chain. Radiology. 2012;263(1):243–52.

    Article  Google Scholar 

  37. Naraghi AM, White LM. Magnetic resonance imaging of joint replacements. Seminars Musculoskelet Radiol. 2006;10(1):98–106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Daghighi.

Ethics declarations

Ethics approval

This study was approved by the ethics committee of Tabriz University of Medical Sciences (approval number: IR.TBZMED.REC.1399.870).

Consent to participate

Informed written consent was obtained from the patient included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhavi Milani, A., Daghighi, M.H., Mirza-Aghazadeh-Attari, M. et al. The diagnostic value of susceptibility-weighted imaging for identifying acute intraarticular hemorrhages. Skeletal Radiol 51, 1777–1785 (2022). https://doi.org/10.1007/s00256-022-04016-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-022-04016-6

Keywords

Navigation