Skip to main content

Advertisement

Log in

Anterior cruciate ligament reconstruction related complications: 2D and 3D high-resolution magnetic resonance imaging evaluation

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Anterior cruciate ligament (ACL) injury is a common indication for sports-related major surgery and accounts for a large proportion of ligamentous injuries in athletes. The advancements in 2D and 3D MR imaging have provided considerable potential for a one-stop shop radiation-free assessment with an all-in-one modality examination of the knee, for both soft-tissue and bone evaluations. This article reviews ACL injuries and types of surgical managements with illustrative examples using high resolution 2D and 3D MR imaging. Various complications of ACL reconstruction procedures are highlighted with a focus on the use of advanced MR imaging and relevant arthroscopic correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Evans J, Nielson J l. Anterior Cruciate Ligament Knee Injuries. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 [cited 2020 Oct 31]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK499848/

  2. Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, et al. Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study. Am J Sports Med. 2016;44:1502–7.

    Article  PubMed  Google Scholar 

  3. Joseph AM, Collins CL, Henke NM, Yard EE, Fields SK, Comstock RD. A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. J Athl Train. 2013/10/23 ed. National Athletic Trainers Association; 2013;48:810–7.

  4. Smith HC, Vacek P, Johnson RJ, Slauterbeck JR, Hashemi J, Shultz S, et al. Risk Factors for Anterior Cruciate Ligament Injury. Sports Health. 2012;4:155–61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Queen RM. Infographic: ACL injury reconstruction and recovery. Bone Jt Res. 2017;6:621–2.

    Article  CAS  Google Scholar 

  6. Décary S, Fallaha M, Belzile S, Martel-Pelletier J, Pelletier J-P, Feldman D, et al. Clinical diagnosis of partial or complete anterior cruciate ligament tears using patients’ history elements and physical examination tests. PLoS ONE [Internet]. 2018 [cited 2020 Oct 31];13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997333/

  7. Krakowski P, Nogalski A, Jurkiewicz A, Karpiński R, Maciejewski R, Jonak J. Comparison of diagnostic accuracy of physical examination and mri in the most common knee injuries. Appl Sci. 2019;9(19):4102. https://doi.org/10.3390/app9194102.

    Article  Google Scholar 

  8. Cimino FM, Volk BS, Setter D. Anterior Cruciate Ligament Injury: Diagnosis, Management, and Prevention. Am Fam Physician. 2010;82:917–22.

    PubMed  Google Scholar 

  9. Madhuranthakam AJ, Yu H, Shimakawa A, Busse RF, Smith MP, Reeder SB, et al. T2-Weighted 3D Fast Spin Echo Imaging With Water-Fat Separation in a Single Acquisition. J Magn Reson Imaging JMRI. 2010;32:745–51.

    Article  PubMed  Google Scholar 

  10. Kayfan S, Hlis R, Pezeshk P, Shah J, Poh F, McCrum C, et al. Three-dimensional and 3-Tesla MRI morphometry of knee meniscus in normal and pathologic state. Clin Anat N Y N. 2021;34:143–53.

    Article  Google Scholar 

  11. Lee JE, Park HJ, Lee SY, Ahn JH, Park JH, Park JY. Evaluation of Selective Bundle Injury to the Anterior Cruciate Ligament: T2-Weighted Fast Spin-Echo 3-T MRI With Reformatted 3D Oblique Isotropic (VISTA) Versus 2D Technique. Am J Roentgenol. American Roentgen Ray Society. 2017;209:W308-16.

    Article  Google Scholar 

  12. Mather RC, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ, et al. Societal and Economic Impact of Anterior Cruciate Ligament Tears. J Bone Joint Surg Am. 2013;95:1751–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahapatra P, Horriat S, Anand BS. Anterior cruciate ligament repair – past, present and future. J Exp Orthop [Internet]. 2018 [cited 2020 Oct 20];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002325/

  14. Raines BT, Naclerio E, Sherman SL. Management of Anterior Cruciate Ligament Injury: What’s In and What’s Out? Indian J Orthop. 2017;51:563–75.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Spindler KP, Wright RW. Anterior Cruciate Ligament (ACL) Tear. N Engl J Med. 2008;359:2135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Casagranda BC, Maxwell NJ, Kavanagh EC, Towers JD, Shen W, Fu FH. Normal Appearance and Complications of Double-Bundle and Selective-Bundle Anterior Cruciate Ligament Reconstructions Using Optimal MRI Techniques. Am J Roentgenol. American Roentgen Ray Society. 2009;192:1407–15.

    Article  Google Scholar 

  17. Chia Z-Y, Chee JN, Bin-Abd-Razak HR, Lie DT, Chang PC. A comparative study of anterior cruciate ligament reconstruction with double, single, or selective bundle techniques. J Orthop Surg SAGE Publications Ltd STM. 2018;26:2309499018773124.

    Google Scholar 

  18. Dong Z, Niu Y, Qi J, Song Y, Wang F. Long term results after double and single bundle ACL reconstruction: Is there any difference? A meta - analysis of randomized controlled trials. Acta Orthop Traumatol Turc. 2019;53:92–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Achtnich A, Herbst E, Forkel P, Metzlaff S, Sprenker F, Imhoff AB, et al. Acute Proximal Anterior Cruciate Ligament Tears: Outcomes After Arthroscopic Suture Anchor Repair Versus Anatomic Single-Bundle Reconstruction. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2016;32:2562–9.

    Article  Google Scholar 

  20. DiFelice GS, Villegas C, Taylor S. Anterior Cruciate Ligament Preservation: Early Results of a Novel Arthroscopic Technique for Suture Anchor Primary Anterior Cruciate Ligament Repair. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2015;31:2162–71.

    Article  Google Scholar 

  21. Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR. What Factors Influence the Biomechanical Properties of Allograft Tissue for ACL Reconstruction? A Systematic Review Clin Orthop. 2017;475:2412–26.

    Article  PubMed  Google Scholar 

  22. Mouarbes D, Menetrey J, Marot V, Courtot L, Berard E, Cavaignac E. Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis of Outcomes for Quadriceps Tendon Autograft Versus Bone-Patellar Tendon–Bone and Hamstring-Tendon Autografts. Am J Sports Med. 2019;47:3531–40.

    Article  PubMed  Google Scholar 

  23. Ashford WB, Kelly TH, Chapin RW, Xerogeanes JW, Slone HS. Predicted quadriceps vs. quadrupled hamstring tendon graft size using 3-dimensional MRI. The Knee. 2018;25:1100–6.

    Article  PubMed  Google Scholar 

  24. Bonasia DE, Amendola A. Graft choice in ACL reconstruction. In: Bonnin M, Amendola A, Bellemans J, MacDonald S, Ménétrey J, editors. Knee Jt Surg Tech Strateg [Internet]. Paris: Springer; 2012 [cited 2020 Dec 24]. p. 173–81. Available from: https://doi.org/10.1007/978-2-287-99353-4_15

  25. White LM, Kramer J, Recht MP. MR imaging evaluation of the postoperative knee: ligaments, menisci, and articular cartilage. Skeletal Radiol. 2005;34:431–52.

    Article  PubMed  Google Scholar 

  26. Meyers AB, Haims AH, Menn K, Moukaddam H. Imaging of Anterior Cruciate Ligament Repair and Its Complications. Am J Roentgenol. 2010;194:476–84.

    Article  Google Scholar 

  27. Palazzolo A, Rosso F, Bonasia DE, Saccia F, Rossi R. Uncommon Complications after Anterior Cruciate Ligament Reconstruction. Joints. 2018;6:188–203.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Spindler KP. Risk Factors and Predictors of Subsequent ACL Injury in either Knee after ACL Reconstruction: Prospective Analysis of 2488 Primary ACL Reconstructions from the MOON Cohort. Am J Sports Med. 2015;43:1583–90.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hoshino Y, Kim D, Fu FH. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction. Anat Res Int [Internet]. 2012 [cited 2020 Nov 1];2012. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335704/

  30. Kim M, Choi YS, Kim H, Choi N-H. Postoperative Evaluation after Anterior Cruciate Ligament Reconstruction: Measurements and Abnormalities on Radiographic and CT Imaging. Korean J Radiol. 2016;17:919.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Howell SM, Gittins ME, Gottlieb JE, Traina SM, Zoellner TM. The relationship between the angle of the tibial tunnel in the coronal plane and loss of flexion and anterior laxity after anterior cruciate ligament reconstruction. Am J Sports Med. 2001;29:567–74.

    Article  CAS  PubMed  Google Scholar 

  32. Patel KA, Chhabra A, Makovicka JL, Bingham J, Piasecki DP, Hartigan DE. Anterior Cruciate Ligament Tunnel Placement Using the Pathfinder Guide. Arthrosc Tech. 2017;6:e1291–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bencardino JT, Beltran J, Feldman MI, Rose DJ. MR Imaging of Complications of Anterior Cruciate Ligament Graft Reconstruction. RadioGraphics Radiological Society of North America. 2009;29:2115–26.

    Google Scholar 

  34. Buckwalter KA, Pennes DR. Anterior cruciate ligament: oblique sagittal MR imaging. Radiology [Internet]. 1990 [cited 2020 Dec 5]; Available from: https://pubs.rsna.org/doi/abs/https://doi.org/10.1148/radiology.175.1.2315495

  35. Zhang J, Hao D, Duan F, Yu T, Zhang C, Che J. The rotating stretched curved planar reconstruction of 3D-FIESTA MR imaging for evaluating the anterior cruciate ligament of the knee joint. Magn Reson Imaging. 2019;55:46–51.

    Article  PubMed  Google Scholar 

  36. Park HJ, Lee SY, Park NH, Ahn JH, Chung EC, Kim SJ, et al. Three-dimensional isotropic T2-weighted fast spin-echo (VISTA) knee MRI at 3.0 T in the evaluation of the anterior cruciate ligament injury with additional views: comparison with two-dimensional fast spin-echo T2-weighted sequences. Acta Radiol Stockh Swed 1987. 2016;57:1372–9.

    Google Scholar 

  37. Chhabra A, Ashikyan O, Hlis R, Cai A, Planchard K, Xi Y, et al. The International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine classification of knee meniscus tears: three-dimensional MRI and arthroscopy correlation. Eur Radiol. 2019;29:6372–84.

    Article  PubMed  Google Scholar 

  38. Shakoor D, Guermazi A, Kijowski R, Fritz J, Roemer FW, Jalali-Farahani S, et al. Cruciate ligament injuries of the knee: A meta-analysis of the diagnostic performance of 3D MRI. J Magn Reson Imaging JMRI. 2019;50:1545–60.

    Article  PubMed  Google Scholar 

  39. Swami VG, Cheng-Baron J, Hui C, Thompson R, Jaremko JL. Reliability of estimates of ACL attachment locations in 3-dimensional knee reconstruction based on routine clinical MRI in pediatric patients. Am J Sports Med. 2013;41:1319–29.

    Article  PubMed  Google Scholar 

  40. Shakoor D, Guermazi A, Kijowski R, Fritz J, Jalali-Farahani S, Mohajer B, et al. Diagnostic Performance of Three-dimensional MRI for Depicting Cartilage Defects in the Knee: A Meta-Analysis. Radiology Radiological Society of North America. 2018;289:71–82.

    Google Scholar 

  41. Shakoor D, Kijowski R, Guermazi A, Fritz J, Roemer FW, Jalali-Farahani S, et al. Diagnosis of Knee Meniscal Injuries by Using Three-dimensional MRI: A Systematic Review and Meta-Analysis of Diagnostic Performance. Radiology Radiological Society of North America. 2018;290:435–45.

    Google Scholar 

  42. Matcuk GR, Gross JS, Fritz J. Compressed Sensing MRI: Technique and Clinical Applications. Adv Clin Radiol Elsevier. 2020;2:257–71.

    Article  Google Scholar 

  43. Endler CH-J, Faron A, Isaak A, Katemann C, Mesropyan N, Kupczyk PA, et al. Fast 3D Isotropic Proton Density-Weighted Fat-Saturated MRI of the Knee at 1.5 T with Compressed Sensing: Comparison with Conventional Multiplanar 2D Sequences. ROFO Fortschr Geb Rontgenstr Nuklearmed. 2021;193:813–21.

    PubMed  Google Scholar 

  44. Altahawi FF, Blount KJ, Morley NP, Raithel E, Omar IM. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences. Skeletal Radiol. 2017;46:7–15.

    Article  PubMed  Google Scholar 

  45. Saithna A, Helito CP, Vieira TD, Sonnery-Cottet B, Muramatsu K. The Anterolateral Ligament Has Limited Intrinsic Healing Potential: A Serial, 3-Dimensional-Magnetic Resonance Imaging Study of Anterior Cruciate Ligament-Injured Knees From the SANTI Study Group. Am J Sports Med. 2021;49:2125–35.

    Article  PubMed  Google Scholar 

  46. Dimitriou D, Zou D, Wang Z, Helmy N, Tsai T-Y. 3T MRI-based anatomy of the anterolateral knee ligament in patients with and without an ACL-rupture: Implications for anatomical anterolateral ligament reconstruction. Knee. 2021;29:390–8.

    Article  PubMed  Google Scholar 

  47. Wadhwa V, Omar H, Coyner K, Khazzam M, Robertson W, Chhabra A. ISAKOS classification of meniscal tears—illustration on 2D and 3D isotropic spin echo MR imaging. Eur J Radiol. 2016;85:15–24.

    Article  PubMed  Google Scholar 

  48. Wadhwa V, Malhotra V, Xi Y, Nordeck S, Coyner K, Chhabra A. Bone and joint modeling from 3D knee MRI: feasibility and comparison with radiographs and 2D MRI. Clin Imaging. 2016;40:765–8.

    Article  PubMed  Google Scholar 

  49. Sivakumaran T, Jaffer R, Marwan Y, Hart A, Radu A, Burman M, et al. Reliability of Anatomic Bony Landmark Localization of the ACL Femoral Footprint Using 3D MRI. Orthop J Sports Med. 2021;9:23259671211042604.

    Article  Google Scholar 

  50. Rosso F, Rossi R, Cantivalli A, Davico M, Fracassi M, Carnazza G, et al. Transepicondylar Distance Can Predict Graft and Tunnel Length for Different Pediatric Anterior Cruciate Ligament Reconstruction Techniques: A Magnetic Resonance Imaging Study. Arthrosc J Arthrosc Relat Surg [Internet]. 2021 [cited 2021 Dec 10]; Available from: https://www.sciencedirect.com/science/article/pii/S0749806321007623

  51. Zhu Z, Li G. An automatic 2D–3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images. Comput Methods Biomech Biomed Engin. 2012;15:1245–56.

    Article  PubMed  Google Scholar 

  52. Amano K, Li Q, Ma CB. Functional knee assessment with advanced imaging. Curr Rev Musculoskelet Med. 2016;9:123–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lansdown DA, Ma CB. Clinical Utility of Advanced Imaging of the Knee. J Orthop Res. 2020;38:473–82.

    Article  PubMed  Google Scholar 

  54. Naraghi A, White L. MRI Evaluation of the Postoperative Knee: Special Considerations and Pitfalls. Clin Sports Med. 2006;25:703–25.

    Article  PubMed  Google Scholar 

  55. Somanathan A, Tandon A, Yang LW. Review of magnetic resonance imaging features of complications after anterior cruciate ligament reconstruction. Singapore Med J. 2019;60:63–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grassi A, Bailey JR, Signorelli C, Carbone G, Tchonang Wakam A, Lucidi GA, et al. Magnetic resonance imaging after anterior cruciate ligament reconstruction: A practical guide. World J Orthop. 2016;7:638–49.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shelbourne KD, Wilckens JH, Mollabashy A, DeCarlo M. Arthrofibrosis in acute anterior cruciate ligament reconstruction. The effect of timing of reconstruction and rehabilitation. Am J Sports Med. 1991;19:332–6.

    Article  CAS  PubMed  Google Scholar 

  58. Bottoni CR, Liddell TR, Trainor TJ, Freccero DM, Lindell KK. Postoperative range of motion following anterior cruciate ligament reconstruction using autograft hamstrings: a prospective, randomized clinical trial of early versus delayed reconstructions. Am J Sports Med. 2008;36:656–62.

    Article  PubMed  Google Scholar 

  59. Kwok CS, Harrison T, Servant C. The optimal timing for anterior cruciate ligament reconstruction with respect to the risk of postoperative stiffness. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2013;29:556–65.

    Article  Google Scholar 

  60. Gnannt R, Chhabra A, Theodoropoulos JS, Hodler J, Andreisek G. MR imaging of the postoperative knee. J Magn Reson Imaging. 2011;34:1007–21.

    Article  PubMed  Google Scholar 

  61. Kulczycka P, Larbi A, Malghem J, Thienpont E, Vande Berg B, Lecouvet F. Imaging ACL reconstructions and their complications. Diagn Interv Imaging. 2015;96:11–9.

    Article  CAS  PubMed  Google Scholar 

  62. Chaudhari NH, Bagga RR, Patni ZM. MR imaging of anterio cruciate ligament injuries. Int J Res Med Sci. 2017;5:4980.

    Article  Google Scholar 

  63. Paschos NK, Howell SM. Anterior cruciate ligament reconstruction: principles of treatment. EFORT Open Rev. 2016;1:398–408.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Papakonstantinou O, Chung CB, Chanchairujira K, Resnick DL. Complications of anterior cruciate ligament reconstruction: MR imaging. Eur Radiol. 2003;13:1106–17.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avneesh Chhabra.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest.

Disclosures

AC serves as a consultant with ICON Medical and Treace Medical concepts, Inc. AC also receives royalties from Jaypee and Wolters. AC is a medical advisor for Image Biopsy Lab Inc. AC served as a speaker for Siemens.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, U., Gulati, V., Shah, J. et al. Anterior cruciate ligament reconstruction related complications: 2D and 3D high-resolution magnetic resonance imaging evaluation. Skeletal Radiol 51, 1347–1364 (2022). https://doi.org/10.1007/s00256-021-03982-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03982-7

Keywords

Navigation