Skip to main content

Advertisement

Log in

Low-velocity, civilian firearm extremity injuries—review and update for radiologists

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Firearm injuries are a preventable epidemic in the USA. Extremities are commonly affected in gunshot injuries. Such injuries may be complex with concomitant osseous, soft tissue, and neurovascular components. The maximum wounding potential of a projectile is determined by its kinetic energy and the proportion of the kinetic energy that is transmitted to the target. Accurate assessment of ballistic injuries is dependent on utilizing the principles of wound ballistics, accurate bullet count, and ballistic trajectory analysis. The goals of this article are to review wound ballistics and the imaging evaluation of extremity civilian firearm injuries in the adult population, with emphasis on ballistic trajectory analysis, specific ballistic fracture patterns, and diffuse, secondary soft tissue ballistic injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Rhee PM, Moore EE, Joseph B, Tang A, Pandit V, Vercruysse G. Gunshot wounds: a review of ballistics, bullets, weapons, and myths. J Trauma Acute Care Surg. 2016;80(6):853–67.

    Article  PubMed  Google Scholar 

  2. Kaufman EJ, Wiebe DJ, Xiong RA, Morrison CN, Seamon MJ, Delgado MK. Epidemiologic trends in fatal and nonfatal firearm injuries in the US, 2009–2017. JAMA Intern Med. 2021;181(2):237–44.

    Article  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention. Violence prevention: firearm violence prevention. Firearm Violence Prevention |Violence Prevention|Injury Center|CDC. Revised 05/04/2021. Accessed: 3/10/2021

  4. Pereira CT, Boyd JB. Outcomes of complex gunshot wounds to the hand and wrist: a 10-year level I urban trauma center experience: reply. Ann Plast Surg. 2013;71:126 (United States).

    Article  PubMed  Google Scholar 

  5. Meade A, Hembd A, Cho MJ, Zhang AY. Surgical treatment of upper extremity gunshot injures: an updated review. Ann Plast Surg. 2021;86(3S Suppl 2):S312-s8.

    Article  CAS  PubMed  Google Scholar 

  6. Kiehn MW, Mitra A, Gutowski KA. Fracture management of civilian gunshot wounds to the hand. Plast Reconstr Surg. 2005;115(2):478–81.

    Article  PubMed  Google Scholar 

  7. PathologyOutlines.com. Autopsy & forensics types of injuries- gunshot wounds. Pathology Outlines - Gunshot wounds. Gitto L, Stoppacher R. 01/11/ 2021. Accessed: 03/15/2021.

  8. Stefanopoulos PK, Pinialidis DE, Hadjigeorgiou GF, Filippakis KN. Wound ballistics 101: the mechanisms of soft tissue wounding by bullets. Eur J Trauma Emerg Surg. 2017;43(5):579–86.

    Article  CAS  PubMed  Google Scholar 

  9. Hanna TN, Shuaib W, Han T, Mehta A, Khosa F. Firearms, bullets, and wound ballistics: an imaging primer. Injury. 2015;46(7):1186–96.

    Article  PubMed  Google Scholar 

  10. Esenkaya I. Removal of the wadding from the wound in shotgun-pellet injuries. Acta Orthop Traumatol Turc. 2002;36(3):236–41.

    PubMed  Google Scholar 

  11. Ragsdale BD. Gunshot wounds: a historical perspective. Mil Med. 1984;149:301Y305.

    Article  Google Scholar 

  12. Lucky Gunner. Stuff you should know about buckshot [Part 1]. Buckshot Sizes & More Shotgun Stuff You Should Know (luckygunner.com). Baker C. 03/03/2020. Accessed: 03/15/2021.

  13. Fountain AJ, Corey A, Malko JA, Strozier D, Allen JW. Imaging appearance of ballistic wounds predicts bullet composition: implications for MRI safety. AJR Am J Roentgenol. 2021;216(2):542–51.

    Article  PubMed  Google Scholar 

  14. Ballistics. Ballistics Britannica. Accessed 3/23/2021.

  15. Firearms tutorial. Firearms tutorial for forensic education - WebPath (utah.edu). Accessed 3/23/2021.

  16. Grosse Perdekamp M, Pollak S, Thierauf A, Strassburger E, Hunzinger M, Vennemann B. Experimental simulation of reentry shots using a skin-gelatine composite model. Int J Legal Med. 2009;123(5):419–25.

    Article  CAS  PubMed  Google Scholar 

  17. Hollerman JJ, Fackler ML, Coldwell DM, Ben-Menachem Y. Gunshot wounds: 1. Bullets, ballistics, and mechanisms of injury. AJR Am J Roentgenol. 1990;155(4):685–90.

    Article  CAS  PubMed  Google Scholar 

  18. Sodagari F, Katz DS, Menias CO, Moshiri M, Pellerito JS, Mustafa A, et al. Imaging evaluation of abdominopelvic gunshot trauma. Radiographics. 2020;40(6):1766–88.

    Article  PubMed  Google Scholar 

  19. Knudsen PJ, Sørensen OH. The initial yaw of some commonly encountered military rifle bullets. Int J Legal Med. 1994;107(3):141–6.

    Article  CAS  PubMed  Google Scholar 

  20. Jandial R, Reichwage B, Levy M, Duenas V, Sturdivan L. Ballistics for the neurosurgeon. Neurosurgery. 2008;62(2):472–80 (discussion 80).

    Article  PubMed  Google Scholar 

  21. Thierauf A, Glardon M, Axmann S, Kneubuehl BP, Kromeier J, Pircher R, et al. The varying size of exit wounds from center-fire rifles as a consequence of the temporary cavity. Int J Legal Med. 2013;127(5):931–6.

    Article  PubMed  Google Scholar 

  22. Oehmichen M, Meissner C, König HG. Brain injury after gunshot wounding: morphometric analysis of cell destruction caused by temporary cavitation. J Neurotrauma. 2000;17(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  23. Powers DB, Delo RI. Characteristics of ballistic and blast injuries. Atlas Oral Maxillofac Surg Clin North Am. 2013;21(1):15–24.

    Article  PubMed  Google Scholar 

  24. ACS TQIP best practices guidelines in imaging. imaging_guidelines.ashx(facs.org). Released 10/2018. Accessed 4/17/2021.

  25. Ditkofsky N, Elbanna KY, Robins J, Ali IT, O’Keeffe M, Berger FH. Ballistic Injury imaging: the basics. Curr Radiol Rep. 2018;6(12):45.

    Article  Google Scholar 

  26. Chu LC, Rowe SP, Fishman EK. Cinematic rendering of skin and subcutaneous soft tissues: potential applications in acute trauma. Emerg Radiol. 2019;26(5):573–80.

    Article  PubMed  Google Scholar 

  27. Pinto A, Russo A, Reginelli A, Iacobellis F, Di Serafino M, Giovine S, et al. Gunshot wounds: ballistics and imaging findings. Semin Ultrasound CT MR. 2019;40(1):25–35.

    Article  PubMed  Google Scholar 

  28. Dreizin D, Boscak AR, Anstadt MJ, Tirada N, Chiu WC, Munera F, et al. Penetrating colorectal injuries: diagnostic performance of multidetector CT with trajectography. Radiology. 2016;281(3):749–62.

    Article  PubMed  Google Scholar 

  29. Siddiqui MI, Hawksworth SA, Sun DY. Removal of migrating lumbar spine bullet: case report and surgical video. World Neurosurg. 2019;131:62–4.

    Article  PubMed  Google Scholar 

  30. Richards JR, McGahan JP. Focused Assessment with Sonography in Trauma (FAST) in 2017: what radiologists can learn. Radiology. 2017;283(1):30–48.

    Article  PubMed  Google Scholar 

  31. Dedini RD, Karacozoff AM, Shellock FG, Xu D, McClellan RT, Pekmezci M. MRI issues for ballistic objects: information obtained at 1.5-, 3- and 7-Tesla. Spine J. 2013;13(7):815–22.

    Article  PubMed  Google Scholar 

  32. Hess U, Harms J, Schneider A, Schleef M, Ganter C, Hannig C. Assessment of gunshot bullet injuries with the use of magnetic resonance imaging. J Trauma. 2000;49(4):704–9.

    Article  CAS  PubMed  Google Scholar 

  33. Gascho D, Zoelch N, Richter H, Buehlmann A, Wyss P, Schaerli S. Identification of bullets based on their metallic components and X-ray attenuation characteristics at different energy levels on CT. AJR Am J Roentgenol. 2019;213(3):W105–13.

    Article  PubMed  Google Scholar 

  34. Winklhofer S, Stolzmann P, Meier A, Schweitzer W, Morsbach F, Flach P, et al. Added value of dual-energy computed tomography versus single-energy computed tomography in assessing ferromagnetic properties of ballistic projectiles: implications for magnetic resonance imaging of gunshot victims. Invest Radiol. 2014;49(6):431–7.

    Article  PubMed  Google Scholar 

  35. Petrow P, Page P, Differding P, Vanel D. The hidden divot fracture: Brogdon’s fracture, a new type of incomplete fracture. AJR Am J Roentgenol. 2001;177(4):946–7.

    Article  CAS  PubMed  Google Scholar 

  36. Rose SC, Fujisaki CK, Moore EE. Incomplete fractures associated with penetrating trauma: etiology, appearance, and natural history. J Trauma. 1988;28(1):106–9.

    Article  CAS  PubMed  Google Scholar 

  37. Maqungo S, Kauta N, Held M, Mazibuko T, Keel MJ, Laubscher M, et al. Gunshot injuries to the lower extremities: issues, controversies and algorithm of management. Injury. 2020;51(7):1426–31.

    Article  PubMed  Google Scholar 

  38. Long WT, Brien EW, Boucree JB Jr, Filler B, Stark HH, Dorr LD. Management of civilian gunshot injuries to the hip. Orthop Clin North Am. 1995;26(1):123–31.

    Article  CAS  PubMed  Google Scholar 

  39. Slavin RE, Swedo J, Cartwright J Jr, Viegas S, Custer EM. Lead arthritis and lead poisoning following bullet wounds: a clinicopathologic, ultrastructural, and microanalytic study of two cases. Hum Pathol. 1988;19(2):223–35.

    Article  CAS  PubMed  Google Scholar 

  40. Dougherty PJ, Vaidya R, Silverton CD, Bartlett C, Najibi S. Joint and long-bone gunshot injuries. J Bone Joint Surg Am. 2009;91(4):980–97.

    PubMed  Google Scholar 

  41. Gonzalez T, Briceno J, Velasco B, Kaiser P, Stenquist D, Miller C, et al. Gunshot-related injuries to the foot & ankle: review article. Foot Ankle Int. 2020;41(4):486–96.

    Article  PubMed  Google Scholar 

  42. Omid R, Stone MA, Zalavras CG, Marecek GS. Gunshot wounds to the upper extremity. J Am Acad Orthop Surg. 2019;27(7):e301–10.

    Article  PubMed  Google Scholar 

  43. Riehl JT, Connolly K, Haidukewych G, Koval K. Fractures due to gunshot wounds: do retained bullet fragments affect union? Iowa Orthop J. 2015;35:55–61.

    PubMed  PubMed Central  Google Scholar 

  44. Perkins ZB, De’Ath HD, Aylwin C, Brohi K, Walsh M, Tai NR. Epidemiology and outcome of vascular trauma at a British Major Trauma Centre. Eur J Vasc Endovasc Surg. 2012;44(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  45. Feliciano DV, Moore FA, Moore EE, West MA, Davis JW, Cocanour CS, et al. Evaluation and management of peripheral vascular injury. Part 1. Western Trauma Association/critical decisions in trauma. J Trauma. 2011;70(6):1551–6.

    PubMed  Google Scholar 

  46. Walkoff L, Nagpal P, Khandelwal A. Imaging primer for CT angiography in peripheral vascular trauma. Emerg Radiol. 2021;28(1):143–52.

    Article  PubMed  Google Scholar 

  47. Pieroni S, Foster BR, Anderson SW, Kertesz JL, Rhea JT, Soto JA. Use of 64-row multidetector CT angiography in blunt and penetrating trauma of the upper and lower extremities. Radiographics. 2009;29(3):863–76.

    Article  PubMed  Google Scholar 

  48. Ghouri MA, Gupta N, Bhat AP, Thimmappa ND, Saboo SS, Khandelwal A, et al. CT and MR imaging of the upper extremity vasculature: pearls, pitfalls, and challenges. Cardiovasc Diagn Ther. 2019;9(Suppl 1):S152–73.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Uyeda JW, Anderson SW, Sakai O, Soto JA. CT angiography in trauma. Radiol Clin North Am. 2010;48(2):423–38 (ix-x).

    Article  PubMed  Google Scholar 

  50. Peach G, Antoniou GA, El Sakka K, Hamady M. Traumatic arterial spasm causing transient limb ischaemia: a genuine clinical entity. Ann R Coll Surg Engl. 2010;92(6):W3-4.

    Article  CAS  PubMed  Google Scholar 

  51. Gakhal MS, Sartip KA. CT angiography signs of lower extremity vascular trauma. AJR Am J Roentgenol. 2009;193(1):W49-57.

    Article  PubMed  Google Scholar 

  52. Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol. 2008;119(9):1951–65.

    Article  PubMed  Google Scholar 

  53. Seddon H. Three types of nerve injury. Brain. 1943;66:237–88.

    Article  Google Scholar 

  54. Sunderland S. Nerves and nerve injuries. 2nd ed. Baltimore: Williams and Wilkins; 1978.

    Google Scholar 

  55. Ohana M, Moser T, Moussaouï A, Kremer S, Carlier RY, Liverneaux P, et al. Current and future imaging of the peripheral nervous system. Diagn Interv Imaging. 2014;95(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  56. Smitaman E, Flores DV, Mejía Gómez C, Pathria MN. MR imaging of atraumatic muscle disorders. Radiographics. 2018;38(2):500–22.

    Article  PubMed  Google Scholar 

  57. West GA, Haynor DR, Goodkin R, Tsuruda JS, Bronstein AD, Kraft G, et al. Magnetic resonance imaging signal changes in denervated muscles after peripheral nerve injury. Neurosurgery. 1994;35(6):1077–85 (discussion 85-6).

    Article  CAS  PubMed  Google Scholar 

  58. McMillan TE, Gardner WT, Schmidt AH, Johnstone AJ. Diagnosing acute compartment syndrome-where have we got to? Int Orthop. 2019;43(11):2429–35.

    Article  PubMed  Google Scholar 

  59. Vaillancourt C, Shrier I, Vandal A, Falk M, Rossignol M, Vernec A, et al. Acute compartment syndrome: how long before muscle necrosis occurs? CJEM. 2004;6(3):147–54.

    Article  PubMed  Google Scholar 

  60. Alexander W, Low N, Pratt G. Acute lumbar paraspinal compartment syndrome: a systematic review. ANZ J Surg. 2018;88(9):854–9.

    Article  PubMed  Google Scholar 

  61. Lu CH, Tsang YM, Yu CW, Wu MZ, Hsu CY, Shih TT. Rhabdomyolysis: magnetic resonance imaging and computed tomography findings. J Comput Assist Tomogr. 2007;31(3):368–74.

    Article  PubMed  Google Scholar 

  62. Khan S, Hawkins BM. Acute limb ischemia interventions. Interv Cardiol Clin. 2020;9(2):221–8.

    PubMed  Google Scholar 

  63. Zang X, Zhou J, Zhang X, Han Y, Chen X. Ischemia reperfusion injury: opportunities for nanoparticles. ACS Biomater Sci Eng. 2020;6(12):6528–39.

    Article  CAS  PubMed  Google Scholar 

  64. Russ PD, Dillingham M. Demonstration of CT hyperdensity in patients with acute renal failure associated with rhabdomyolysis. J Comput Assist Tomogr. 1991;15(3):458–63.

    Article  CAS  PubMed  Google Scholar 

  65. Dienstknecht T, Horst K, Sellei RM, Berner A, Nerlich M, Hardcastle TC. Indications for bullet removal: overview of the literature, and clinical practice guidelines for European trauma surgeons. Eur J Trauma Emerg Surg. 2012;38(2):89–93.

    Article  CAS  PubMed  Google Scholar 

  66. Apte A, Bradford K, Dente C, Smith RN. Lead toxicity from retained bullet fragments: A systematic review and meta-analysis. J Trauma Acute Care Surg. 2019;87(3):707–16.

    Article  PubMed  Google Scholar 

  67. Silbergeld EK, Sauk J, Somerman M, Todd A, McNeill F, Fowler B, et al. Lead in bone: storage site, exposure source, and target organ. Neurotoxicology. 1993;14(2–3):225–36.

    CAS  PubMed  Google Scholar 

  68. Nguyen A, Schaider JJ, Manzanares M, Hanaki R, Rydman RJ, Bokhari F. Elevation of blood lead levels in emergency department patients with extra-articular retained missiles. J Trauma. 2005;58(2):289–99.

    Article  PubMed  Google Scholar 

  69. Athanaselis ED, Fyllos A, Stefanou N, Varitimidis SE, Giannikas D. A tumor-like lump in the palm caused by an inconspicuous-for 75 years-bullet. Case Rep Orthop. 2020;2020:8898016.

    PubMed  PubMed Central  Google Scholar 

  70. Brogdon BG, Cottrell WC, Nimityongskul P, Takhtani D. A bullet-sired bone cyst. Skeletal Radiol. 2006;35(12):959–63.

    Article  CAS  PubMed  Google Scholar 

  71. Surov A, Thermann F, Behrmann C, Spielmann RP, Kornhuber M. Late sequelae of retained foreign bodies after world war II missile injuries. Injury. 2012;43(9):1614–6.

    Article  PubMed  Google Scholar 

  72. Fernandes JL, Rocha AA, Soares MV, Viana SL. Lead arthropathy: radiographic, CT and MRI findings. Skeletal Radiol. 2007;36(7):647–57.

    Article  PubMed  Google Scholar 

  73. Brown KV, Guthrie HC, Ramasamy A, Kendrew JM, Clasper J. Modern military surgery: lessons from Iraq and Afghanistan. J Bone Joint Surg Br. 2012;94(4):536–43.

    Article  CAS  PubMed  Google Scholar 

  74. Huber GH, Manna B. Vascular extremity trauma. StatPearls [Internet]. Last Update: September 18, 2021.

  75. MacKenzie EJ, Bosse MJ, Kellam JF, Burgess AR, Webb LX, Swiontkowski MF, et al. Factors influencing the decision to amputate or reconstruct after high-energy lower extremity trauma. J Trauma. 2002;52(4):641–9.

    PubMed  Google Scholar 

  76. ORTHO BULLETS. Gun shot wounds. Weatherford B. Updated: 5/23/2021. Accessed: 5/28/2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimia Khalatbari Kani.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kani, K.K., Porrino, J.A. & Chew, F.S. Low-velocity, civilian firearm extremity injuries—review and update for radiologists. Skeletal Radiol 51, 1153–1171 (2022). https://doi.org/10.1007/s00256-021-03935-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03935-0

Keywords

Navigation