Skip to main content

Periarticular calcifications

Abstract

Periarticular calcification and ossification is a frequent finding on imaging and may sometimes pose a diagnostic challenge. The differential diagnoses for this radiological finding are wide and can be classified into broad groups such as idiopathic, developmental, trauma, burns, infection, tumor, connective tissue disease, crystalline, metabolic, vascular, and foreign bodies. With careful consideration of the clinical and imaging findings as well as awareness of mimickers of periarticular mineralization, the list of differential diagnoses can be narrowed down. This article aims to review the clinical-radiologic findings of periarticular calcified or ossified lesions with relevant imaging illustrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Abbreviations

HU:

Hounsfield unit

CT:

Computed tomography

DECT:

Dual-energy CT

MRI:

Magnetic resonance imaging

US:

Ultrasound

ISSVA:

International Society for the Study of Vascular Anomalies

FDG:

Fluorodeoxyglucose

PET:

Positron emission tomography

MSU:

Monosodium urate

HADD:

Calcium hydroxyapatite deposition disease

CPDD:

Calcium pyrophosphate deposition disease

FB:

Foreign body

BPOP:

Bizarre parosteal osteochondromatous proliferation

STIR:

Short tau inversion recovery

3D:

Three-dimensional

GRE:

Gradient echo

PD:

Proton density

FS:

Fat suppression

References

  1. de Faria LL, Babler F, Ferreira LC, de Noronha Junior OA, Marsolla FL, Ferreira DL. Soft tissue calcifications: a pictorial essay. Radiol Bras. 2020;53:337–44.

    PubMed  PubMed Central  Google Scholar 

  2. Freire V, Moser TP, Lepage-Saucier M. Radiological identification and analysis of soft tissue musculoskeletal calcifications. Insights Imaging. 2018;9:477–92.

    PubMed  PubMed Central  Google Scholar 

  3. Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281:690–707.

    PubMed  Google Scholar 

  4. Rajiah P, Sundaram M, Subhas N. Dual-energy CT in musculoskeletal imaging: what is the role beyond gout? Am J Roentgenol. 2019;213:493–505.

    Google Scholar 

  5. Adams LC, Bressem K, Böker SM, Bender Y-NY, Nörenberg D, Hamm B, Makowski MR. Diagnostic performance of susceptibility-weighted magnetic resonance imaging for the detection of calcifications: a systematic review and meta-analysis. Sci Rep. 2017;7:15506.

    PubMed  PubMed Central  Google Scholar 

  6. Hughes M, Hodgson R, Harris J, Porter N, Jackson S, Kirwadi A, Manning J, Peytrignet S, Herrick AL. Imaging calcinosis in patients with systemic sclerosis by radiography, computerised tomography and magnetic resonance imaging. Semin Arthritis Rheum. 2019;49:279–82.

    PubMed  Google Scholar 

  7. Olsen KM, Chew FS. Tumoral calcinosis: pearls, polemics, and alternative possibilities. Radiographics. 2006;26:871–85.

    PubMed  Google Scholar 

  8. Banks KP, Bui-Mansfield LT, Chew FS, Collinson F. A compartmental approach to the radiographic evaluation of soft-tissue calcifications. Semin Roentgenol. 2005;40:391–407.

    PubMed  Google Scholar 

  9. Eisenberg B, Tzamaloukas AH, Hartshorne MF, Listrom MB, Arrington ER, Sherrard DJ. Periarticular tumoral calcinosis and hypercalcemia in a hemodialysis patient without hyperparathyroidism: a case report. J Nucl Med. 1990;31:1099.

    CAS  PubMed  Google Scholar 

  10. Balin SJ, Wetter DA, Andersen LK, Davis MDP. Calcinosis cutis occurring in association with autoimmune connective tissue disease: the Mayo Clinic experience with 78 patients, 1996–2009. Arch Dermatol. 2012;148:455–62.

    CAS  PubMed  Google Scholar 

  11. de Vuyst D, Vanhoenacker F, Gielen J, Bernaerts A, de Schepper AM. Imaging features of musculoskeletal tuberculosis. Eur Radiol. 2003;13:1809–19.

    PubMed  Google Scholar 

  12. Lanzer P. Primary media sclerosis Mönckeberg: diagnostic criteria. Cor Vasa. 2018;60:e205–8.

    Google Scholar 

  13. ISSVA Classification of Vascular Anomalies ©2018 International Society for the Study of Vascular Anomalies Available at “issva.org/classification” Accessed 8 June 2021.

  14. Flors L, Leiva-Salinas C, Maged IM, et al. MR imaging of soft-tissue vascular malformations: diagnosis, classification, and therapy follow-up. Radiographics. 2011;31:1321–40.

    PubMed  Google Scholar 

  15. Flores D, v., Gómez CM, Estrada-Castrillón M, Smitaman E, Pathria MN, . MR imaging of muscle trauma: anatomy, biomechanics, pathophysiology, and imaging appearance. Radiographics. 2018;38:124–48.

    PubMed  Google Scholar 

  16. Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW (2019) Heterotopic ossification: a comprehensive review. JBMR Plus 3:e10172

  17. Walczak BE, Johnson CN, Howe BM. Myositis ossificans. J Am Acad Orthop Surg. 2015;23:612–22.

    PubMed  Google Scholar 

  18. Kwee RM, Kwee TC. Calcified or ossified benign soft tissue lesions that may simulate malignancy. Skeletal Radiol. 2019;48:1875–90.

    PubMed  PubMed Central  Google Scholar 

  19. Shirkhoda A, Armin A-R, Bis KG, Makris J, Irwin RB, Shetty AN. MR imaging of myositis ossificans: variable patterns at different stages. J Magn Reson Imaging. 1995;5:287–92.

    CAS  PubMed  Google Scholar 

  20. Zubler V, Mühlemann M, Sutter R, Götschi T, Müller DA, Dietrich TJ, Pfirrmann CW. Diagnostic utility of perilesional muscle edema in myositis ossificans. Skeletal Radiol. 2020;49:929–36.

    PubMed  Google Scholar 

  21. Schulte M, Brecht-Krauss D, Heymer B, Guhlmann A, Hartwig E, Sarkar MR, Diederichs CG, Schultheiß M, Kotzerke J, Reske SN. Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible? Eur J Nucl Med. 1999;26:599–605.

    CAS  PubMed  Google Scholar 

  22. Martin DA, Senanayake S. Myositis ossificans. N Engl J Med. 2011;364:758–758.

    CAS  PubMed  Google Scholar 

  23. O’Dwyer HM, Al-Nakshabandi NA, Al-Muzahmi K, Ryan A, O’Connell JX, Munk PL. Calcific myonecrosis: keys to recognition and management. Am J Roentgenol. 2006;187:227.

    Google Scholar 

  24. Guo S, Yan YY, Lee SSY, Tan TJ. Accessory ossicles of the foot—an imaging conundrum. Emerg Radiol. 2019;26:465–78.

    PubMed  Google Scholar 

  25. Narayanasamy S, Krishna S, Sathiadoss P, Althobaity W, Koujok K, Sheikh AM. Radiographic review of avulsion fractures. Radiographics. 2018;38:1496–7.

    PubMed  Google Scholar 

  26. Tsionos I, Leclercq C, Rochet JM. Heterotopic ossification of the elbow in patients with burns. Results after early excision. Journal of Bone and Joint Surgery - Series B. 2004;86:396–403.

    CAS  Google Scholar 

  27. Orchard GR, Paratz JD, Blot S, Roberts JA. Risk factors in hospitalized patients with burn injuries for developing heterotopic ossification—a retrospective analysis. J Burn Care Res. 2015;36:465–70.

    PubMed  Google Scholar 

  28. Kornhaber R, Foster N, Edgar D, Visentin D, Ofir E, Haik J, Harats M. The development and impact of heterotopic ossification in burns: a review of four decades of research. Scars, Burns & Healing. 2017;3:205951311769565.

    Google Scholar 

  29. Roddy E, Choi HK. Epidemiology of gout. Rheumatic Disease Clinics of North America. 2014;40:155–75.

    PubMed  Google Scholar 

  30. Girish G, Melville DM, Kaeley GS, Brandon CJ, Goyal JR, Jacobson JA, Jamadar DA. Imaging Appearances in Gout. Arthritis. 2013;2013:1–10.

    Google Scholar 

  31. Abdellatif W, Ding J, Khorshed D, Shojania K, Nicolaou S. Unravelling the mysteries of gout by multimodality imaging. Semin Arthritis Rheum. 2020;50:S17–23.

    CAS  PubMed  Google Scholar 

  32. Gerster JC, Landry M, Dufresne L, Meuwly JY. Imaging of tophaceous gout: computed tomography provides specific images compared with magnetic resonance imaging and ultrasonography. Ann Rheum Dis. 2002;61:52–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Richette P, Doherty M, Pascual E, et al. 2018 updated European League against Rheumatism evidence-based recommendations for the diagnosis of gout. Ann Rheum Dis. 2020;79:31–8.

    PubMed  Google Scholar 

  34. Bongartz T, Glazebrook KN, Kavros SJ, et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis. 2015;74:1072–7.

    CAS  PubMed  Google Scholar 

  35. Terslev L, Gutierrez M, Christensen R, et al. Assessing elementary lesions in gout by ultrasound: results of an OMERACT patient-based agreement and reliability exercise. J Rheumatol. 2015;42:2149–54.

    CAS  PubMed  Google Scholar 

  36. Howard RG, Pillinger MH, Gyftopoulos S, Thiele RG, Swearingen CJ, Samuels J. Reproducibility of musculoskeletal ultrasound for determining monosodium urate deposition: concordance between readers. Arthritis Care Res. 2011;63:1456–62.

    CAS  Google Scholar 

  37. Ogdie A, Taylor WJ, Neogi T, et al. Performance of ultrasound in the diagnosis of gout in a multicenter study: comparison with monosodium urate monohydrate crystal analysis as the gold standard. Arthritis and Rheumatology. 2017;69:429–38.

    PubMed  Google Scholar 

  38. Chen CKH, Yeh LR, Pan H, ben, Yang CF, Lu YC, Wang JS, Resnick D, . Intra-articular gouty tophi of the knee: CT and MR imaging in 12 patients. Skeletal Radiol. 1999;28:75–80.

    CAS  PubMed  Google Scholar 

  39. Forbess LJ, Fields TR. The broad spectrum of urate crystal deposition: unusual presentations of gouty tophi. Semin Arthritis Rheum. 2012;42:146–54.

    CAS  PubMed  Google Scholar 

  40. Jacques T, Michelin P, Badr S, Nasuto M, Lefebvre G, Larkman N, Cotten A. Conventional radiology in crystal arthritis: gout, calcium pyrophosphate deposition, and basic calcium phosphate crystals. Radiol Clin North Am. 2017;55:967–84.

    PubMed  Google Scholar 

  41. Vinson EN, Desai S, v, Reddy S, Goldner RD, . AJR teaching file: periarticular calcifications in two patients with acute hand pain. Am J Roentgenol. 2010;195:S76–9.

    Google Scholar 

  42. Kraemer EJ, El-Khoury GY. Atypical calcific tendinitis with cortical erosions. Skeletal Radiol. 2000;29:690–6.

    CAS  PubMed  Google Scholar 

  43. Farin PU. Consistency of rotator-cuff calcifications: observations on plain radiography, sonography, computed tomography, and at needle treatment. Invest Radiol. 1996;31:300–4.

    CAS  PubMed  Google Scholar 

  44. Flemming DJ, Murphey MD, Shekitka KM, Temple HT, Jelinek JJ, Kransdorf MJ. Osseous involvement in calcific tendinitis: a retrospective review of 50 cases. Am J Roentgenol. 2003;181:965–72.

    Google Scholar 

  45. Marinetti A, Sessa M, Falzone A, della Sala SW, . Intraosseous migration of tendinous calcifications: two case reports. Skeletal Radiol. 2018;47:131–6.

    CAS  PubMed  Google Scholar 

  46. Pascart T, Falgayrac G, Norberciak L, Lalanne C, Legrand J, Houvenagel E, Ea H-K, Becce F, Budzik J-F (2020) Dual-energy computed-tomography-based discrimination between basic calcium phosphate and calcium pyrophosphate crystal deposition in vivo. Therapeutic Advances in Musculoskeletal Disease 12:1759720X20936060

  47. Zubler C, Mengiardi B, Schmid MR, Hodler J, Jost B, Pfirrmann CWA. MR arthrography in calcific tendinitis of the shoulder: diagnostic performance and pitfalls. Eur Radiol. 2007;17:1603–10.

    PubMed  Google Scholar 

  48. Nörenberg D, Ebersberger HU, Walter T, Ockert B, Knobloch G, Diederichs G, Hamm B, Makowski MR. Diagnosis of calcific tendonitis of the rotator cuff by using susceptibility-weighted MR imaging. Radiology. 2015;278:475–84.

    PubMed  Google Scholar 

  49. Jeong W, Kim J, Choi S, Kang H. Very rapidly progressive shoulder arthropathy with complete destruction of the humeral head. Journal of Rheumatic Diseases. 2019;26:142.

    Google Scholar 

  50. Abhishek A. Calcium pyrophosphate deposition disease: a review of epidemiologic findings. Curr Opin Rheumatol. 2016;28:133–9.

    CAS  PubMed  Google Scholar 

  51. Zhang W, Doherty M, Bardin T, et al. European league against rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis. Ann Rheum Dis. 2011;70:563–70.

    CAS  PubMed  Google Scholar 

  52. Buckens CF, Terra MP, Maas M. Computed tomography and MR imaging in crystalline-induced arthropathies. Radiol Clin North Am. 2017;55:1023–34.

    PubMed  Google Scholar 

  53. Dharas M, Balogh P, Calleja M, Saifuddin A. Test yourself: a 49-year-old lady with a history of chronic left hip pain following a fall twenty months earlier. Skeletal Radiol. 2020;49:1495–6.

    PubMed  Google Scholar 

  54. Kim HR, Lee JH, Kim NR, Lee SH. Detection of calcium pyrophosphate dihydrate crystal deposition disease by dual-energy computed tomography. Korean J Intern Med. 2014;29:404–5.

    PubMed  PubMed Central  Google Scholar 

  55. Budzik J-F, Marzin C, Legrand J, Norberciak L, Becce F, Pascart T. Can dual-energy computed tomography be used to identify early calcium crystal deposition in the knees of patients with calcium pyrophosphate deposition? Arthritis & Rheumatology. 2021;73:687–92.

    CAS  Google Scholar 

  56. Tanikawa H, Ogawa R, Okuma K, Harato K, Niki Y, Kobayashi S, Nagura T. Detection of calcium pyrophosphate dihydrate crystals in knee meniscus by dual-energy computed tomography. J Orthop Surg Res. 2018;13:73.

    PubMed  PubMed Central  Google Scholar 

  57. Beltran J, Marty-Delfaut E, Bencardino J, Rosenberg ZS, Steiner G, Aparisi F, Padrón M. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations. Skeletal Radiol. 1998;27:369–74.

    CAS  PubMed  Google Scholar 

  58. Murphey MD, Gibson MS, Jennings BT, Crespo-Rodríguez AM, Fanburg-Smith J, Gajewski DA. From the archives of the AFIP: imaging of synovial sarcoma with radiologic-pathologic correlation. Radiographics. 2006;26:1543–65.

    PubMed  Google Scholar 

  59. Sánchez Reyes JM, Alcaraz Mexia M, Quiñones Tapia D, Aramburu JA. Extensively calcified synovial sarcoma. Skeletal Radiol. 1997;26:671–3.

    PubMed  Google Scholar 

  60. Krieg AH, Hefti F, Speth BM, et al. Synovial sarcomas usually metastasize after >5 years: a multicenter retrospective analysis with minimum follow-up of 10 years for survivors. Ann Oncol. 2011;22:458–67.

    CAS  PubMed  Google Scholar 

  61. Murphey MD, Vidal JA, Fanburg-Smith JC, Gajewski DA. From the archives of the AFIP: imaging of synovial chondromatosis with radiologic-pathologic correlation. Radiographics. 2007;27:1465–88.

    PubMed  Google Scholar 

  62. Fetsch JF, Vinh TN, Remotti F, Walker EA, Murphey MD, Sweet DE. Tenosynovial (extraarticular) chondromatosis: an analysis of 37 cases of an underrecognized clinicopathologic entity with a strong predilection for the hands and feet and a high local recurrence rate. Am J Surg Pathol. 2003;27:1260–8.

    PubMed  Google Scholar 

  63. Amary F, Perez-Casanova L, Ye H, et al. Synovial chondromatosis and soft tissue chondroma: extraosseous cartilaginous tumor defined by FN1 gene rearrangement. Mod Pathol. 2019;32:1762–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bancroft LW, Peterson JJ, Kransdorf MJ. Imaging of soft tissue lesions of the foot and ankle. Radiol Clin North Am. 2008;46:1093–103.

    PubMed  Google Scholar 

  65. Hondar Wu HT, Chen W, Lee O, Chang CY. Imaging and pathological correlation of soft-tissue chondroma: a serial five-case study and literature review. Clin Imaging. 2006;30:32–6.

    PubMed  Google Scholar 

  66. Jacobson JA, Lenchik L, Ruhoy MK, Schweitzer ME, Resnick D. MR Imaging of the Infrapatellar Fat Pad of Hoffa. Radiographics. 1997;17:675–91.

    CAS  PubMed  Google Scholar 

  67. Jarraya M, Hayashi D, de Villiers R, v, Roemer FW, Murakami AM, Cossi A, Guermazi A, . Multimodality imaging of foreign bodies of the musculoskeletal system. Am J Roentgenol. 2014;203:W92–102.

    Google Scholar 

  68. Puvanesarajah V, Fayad LM, Rao SS, McCarthy EF, Morris CD. Extremity gossypiboma mimicking sarcoma: case report and review. Skeletal Radiol. 2019;48:629–35.

    PubMed  Google Scholar 

  69. Carneiro BC, Cruz IAN, Chemin RN, Rizzetto TA, Guimarães JB, Silva FD, Yoshida Junior C, Pastore D, Ormond Filho AG, Nico MAC. Multimodality imaging of foreign bodies: new insights into old challenges. Radiographics. 2020;40:1965–86.

    PubMed  Google Scholar 

  70. Horton LK, Jacobson JA, Powell A, Fessell DP, Hayes CW. Sonography and radiography of soft-tissue foreign bodies. Am J Roentgenol. 2001;176:1155–9.

    CAS  Google Scholar 

  71. Sundaram M, Wang L, Rotman M, Howard R, Saboeiro AP. Florid reactive periostitis and bizarre parosteal osteochondromatous proliferation: pre-biopsy imaging evolution, treatment and outcome. Skeletal Radiol. 2001;30:192–8.

    CAS  PubMed  Google Scholar 

  72. Harper K, Sathiadoss P, Saifuddin A, Sheikh A. A review of imaging of surface sarcomas of bone. Skeletal Radiol. 2021;50:9–28.

    PubMed  Google Scholar 

  73. Woertler K, Blasius S, Brinkschmidt C, Hillmann A, Link TM, Heindel W. Periosteal chondroma: MR characteristics. J Comput Assist Tomogr. 2001;25:425–30.

    CAS  PubMed  Google Scholar 

  74. Robinson P, White LM, Sundaram M, Kandel R, Wunder J, McDonald DJ, Janney C, Bell RS. Periosteal chondroid tumors: radiologic evaluation with pathologic correlation. Am J Roentgenol. 2001;177:1183–8.

    CAS  Google Scholar 

  75. Chaabane S, Bouaziz MC, Drissi C, Abid L, Ladeb MF. Periosteal chondrosarcoma. Am J Roentgenol. 2009;192:W1–6.

    Google Scholar 

  76. Jacobson JA, Girish G, Jiang Y, Resnick D. Radiographic evaluation of arthritis: inflammatory conditions. Radiology. 2008;248:378–89.

    PubMed  Google Scholar 

  77. Murali R, Bonar SF, Kirsh G, Walter WK, Walter WL. Osteolysis in third-generation alumina ceramic-on-ceramic hip bearings with severe impingement and titanium metallosis. J Arthroplasty. 2008;23:1240.e13-1240.e19.

    Google Scholar 

  78. Heffernan EJ, Alkubaidan FO, Nielsen TO, Munk PL. The imaging appearances of metallosis. Skeletal Radiol. 2008;37:59–62.

    CAS  PubMed  Google Scholar 

  79. Fritz J, Lurie B, Miller TT, Potter HG. MR imaging of hip arthroplasty implants. Radiographics. 2014;34:E106–32.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, Y.Y., Dous, Y.N.B., Ouellette, H.A. et al. Periarticular calcifications. Skeletal Radiol 51, 451–475 (2022). https://doi.org/10.1007/s00256-021-03842-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03842-4

Keywords

  • Periarticular mineralization
  • Calcified malignancy
  • Calcinosis
  • Synovial sarcoma
  • Ossification