Skip to main content

Advertisement

Log in

Current concepts of spondylosis and posterior spinal motion preservation for radiologists

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Spinal fusion is performed to eliminate motion at a degenerated or unstable segment. However, this is associated with loss of motion at the fused levels and increased stress on adjacent levels. Motion-preserving implants have been designed in effort to mitigate the limitations of fusion. This review will focus on posterior spinal motion-preserving technologies. In the cervical spine, laminoplasty is a posterior motion-preserving procedure used in the management of myelopathy/cord compression. In the lumbar spine, motion-sparing systems include interspinous process devices (also referred to as interspinous process spacers or distraction devices), posterior dynamic stabilization devices (also referred to as pedicle screw/rod fixation-based systems), and posterior element replacement systems (also referred to as total facet replacement devices). Knowledge of the intended physiologic purpose, hardware utilized, and complications is important in the assessment of imaging in those who have undergone posterior motion preservation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Figure 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Berman D, Oren JH, Bendo J, Spivak J. The effect of smoking on spinal fusion. Int J Spine Surg. 2017;11:29.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Murtagh R, Castellvi AE. Motion preservation surgery in the spine. Neuroimaging Clin N Am. 2014;24:287–94.

    Article  PubMed  Google Scholar 

  3. Tyagi V, Strom R, Tanweer O, Frempong-Boadu AK. Posterior dynamic stabilization of the lumbar spine review of biomechanical and clinical studies. Bull Hosp Jt Dis. 2013;2018(76):100–4.

    Google Scholar 

  4. Gomleksiz C, Sasani M, Oktenoglu T, Ozer AF. A short history of posterior dynamic stabilization. Adv Orthop. 2012;2012:629698.

  5. Harrop JS, Youssef JA, Maltenfort M, Vorwald P, Jabbour P, Bono CM, et al. Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty. Spine (Phila Pa 1976). 2008;33(15):1701–7.

    Article  Google Scholar 

  6. McAfee P, Khoo LT, Pimenta L, Capuccino A, Sengoz A, Coric D, et al. Treatment of lumbar spinal stenosis with a total posterior arthroplasty prosthesis: implant description, surgical technique, and a prospective report on 29 patients. Neurosurg Focus. 2007;22:E13.

    Article  PubMed  Google Scholar 

  7. Anekstein Y, Floman Y, Smorgick Y, Rand N, Millgram M, Mirovsky Y. Seven years follow-up for total lumbar facet joint replacement (TOPS) in the management of lumbar spinal stenosis and degenerative spondylolisthesis. Eur Spine J. 2015;24:2306–14.

    Article  PubMed  Google Scholar 

  8. Smorgick Y, Mirovsky Y, Floman Y, Rand N, Millgram M, Anekstein Y. Long-term results for total lumbar facet joint replacement in the management of lumbar degenerative spondylolisthesis. J Neurosurg Spine. 2019;1–6. https://doi.org/10.3171/2019.7.SPINE19150.

  9. Bydon M, De la Garza-Ramos R, Abt NB, Gokaslan ZL, Wolinsky J-P, Sciubba DM, et al. Impact of smoking on complication and pseudarthrosis rates after single- and 2-level posterolateral fusion of the lumbar spine. Spine (Phila Pa 1976). 2014;39(21):1765–70.

    Article  Google Scholar 

  10. Nachanakian A, El Helou A, Alaywan M. Posterior dynamic stabilization: the interspinous spacer from treatment to prevention. Asian J Neurosurg. 2016;11:87–93.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sengupta DK. Dynamic stabilization devices in the treatment of low back pain. Neurol India. 2005;53:466–74.

    Article  CAS  PubMed  Google Scholar 

  12. Tendulkar G, Chen T, Ehnert S, Kaps HP, Nüssler AK. Intervertebral Disc Nucleus Repair: Hype or Hope? Int J Mol Sci. 2019;20(15):3622. https://doi.org/10.3390/ijms20153622.

    Article  CAS  PubMed Central  Google Scholar 

  13. Kaner T, Sasani M, Oktenoglu T, Ozer AF. Dynamic stabilization of the spine: a new classification system. Turk Neurosurg. 2010;20:205–15.

    PubMed  Google Scholar 

  14. Gala RJ, Russo GS, Whang PG. Interspinous implants to treat spinal stenosis. Curr Rev Musculoskelet Med. 2017;10:182–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Audat ZA, Fawareh MD, Radydeh AM, Obeidat MM, Odat MA, Bashaireh KM, et al. Anterior versus posterior approach to treat cervical spondylotic myelopathy, clinical and radiological results with long period of follow-up. SAGE Open Med. 2018;6:2050312118766199.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Coric D, Atkins T. Cervical Kyphosis (Post-laminectomy) Surgery complication. In: Mummaneni P, Park P, Crawford III C, Kanter A, Glassman S (eds) Spinal Deformity. [Internet]. Springer, Cham; 2018. https://doi.org/10.1007/978-3-319-60083-3_5

  17. Pal GP, Sherk HH. The vertical stability of the cervical spine. Spine (Phila Pa 1976). 1988;13(5):447–9.

    Article  CAS  Google Scholar 

  18. Koda M, Mochizuki M, Konishi H, Aiba A, Kadota R, Inada T, et al. Comparison of clinical outcomes between laminoplasty, posterior decompression with instrumented fusion, and anterior decompression with fusion for K-line (-) cervical ossification of the posterior longitudinal ligament. Eur Spine J. 2016;25:2294–301.

    Article  PubMed  Google Scholar 

  19. Braly BA, Lunardini D, Cornett C, Donaldson WF. Operative treatment of cervical myelopathy: cervical laminoplasty. Adv Orthop. 2012;2012:2012:508534. https://doi.org/10.1155/2012/508534.

  20. Hirano Y, Ohara Y, Mizuno J, Itoh Y. History and evolution of laminoplasty. Neurosurg Clin N Am. 2018;29:107–13.

    Article  PubMed  Google Scholar 

  21. Ito M, Nagahama K. Laminoplasty for cervical myelopathy. Global Spine J. 2012;2:187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim D, Vaccaro A, Dickman C, Cho D, Lee S, Kim I. Surgical anatomy and techniques to the spine. Second: Saunders; 2013.

    Google Scholar 

  23. Shen F, Samartzis D, Fessler R. Textbook of the cervical spine. First: Saunders; 2014.

    Google Scholar 

  24. Jandial R. Core techniques in operative neurosurgery. 2nd ed. Amsterdam: Elsevier; 2019. p. 720.

  25. Hale JJ, Gruson KI, Spivak JM. Laminoplasty: a review of its role in compressive cervical myelopathy. Spine J. 2006;6:289S-298S.

    Article  PubMed  Google Scholar 

  26. Seng C, Tow BPB, Siddiqui MA, Srivastava A, Wang L, Yew AKS, et al. Surgically treated cervical myelopathy: a functional outcome comparison study between multilevel anterior cervical decompression fusion with instrumentation and posterior laminoplasty. Spine J. 2013;13:723–31.

    Article  PubMed  Google Scholar 

  27. Xu L, Sun H, Li Z, Liu X, Xu G. Anterior cervical discectomy and fusion versus posterior laminoplasty for multilevel cervical myelopathy: a meta-analysis. Int J Surg. 2017;48:247–53.

    Article  CAS  PubMed  Google Scholar 

  28. Imagama S, Matsuyama Y, Yukawa Y, Kawakami N, Kamiya M, Kanemura T, et al. C5 palsy after cervical laminoplasty: a multicentre study. J Bone Joint Surg Br. 2010;92:393–400.

    Article  CAS  PubMed  Google Scholar 

  29. Lee JS, Son DW, Lee SH, Kim DH, Lee SW, Song GS. The predictable factors of the postoperative kyphotic change of sagittal alignment of the cervical spine after the laminoplasty. J Korean Neurosurg Soc. 2017;60:577–83.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cao J, Zhang J, Yang D, Yang L, Shen Y. Multivariate analysis of factors associated with kyphotic deformity after laminoplasty in cervical spondylotic myelopathy patients without preoperative kyphotic alignment. Sci Rep. 2017;7:43443.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dugoni DE, Mancarella C, Landi A, Tarantino R, Ruggeri AG, Delfini R. Post laminoplasty cervical kyphosis-Case report. Int J Surg Case Rep. 2014;5:853–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hosono N, Yonenobu K, Ono K. Neck and shoulder pain after laminoplasty. A noticeable complication Spine. 1996;21:1969–73.

    CAS  PubMed  Google Scholar 

  33. Hosono N, Sakaura H, Mukai Y, Yoshikawa H. The source of axial pain after cervical laminoplasty-C7 is more crucial than deep extensor muscles. Spine. 2007;32:2985–8.

    Article  PubMed  Google Scholar 

  34. Iizuka H, Iizuka Y, Nakagawa Y, Nakajima T, Toda N, Shimegi A, et al. Interlaminar bony fusion after cervical laminoplasty: its characteristics and relationship with clinical results. Spine. 2006;31:644–7.

    Article  PubMed  Google Scholar 

  35. Heller JG, Edwards CC, Murakami H, Rodts GE. Laminoplasty versus laminectomy and fusion for multilevel cervical myelopathy: an independent matched cohort analysis. Spine. 2001;26:1330–6.

    Article  CAS  PubMed  Google Scholar 

  36. Richards JC, Majumdar S, Lindsey DP, Beaupré GS, Yerby SA. The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent claudication. Spine (Phila Pa 1976). 2005;30(7):744–9.

    Article  Google Scholar 

  37. Bono CM, Vaccaro AR. Interspinous process devices in the lumbar spine. J Spinal Disord Tech. 2007;20:255–61.

    Article  PubMed  Google Scholar 

  38. Gazzeri R, Galarza M, Alfieri A. Controversies about interspinous process devices in the treatment of degenerative lumbar spine diseases: past, present, and future. Biomed Res Int. 2014; 2014:975052. https://doi.org/10.1155/2014/975052.

  39. Tuschel A, Chavanne A, Eder C, Meissl M, Becker P, Ogon M. Implant survival analysis and failure modes of the X-Stop interspinous distraction device. Spine (Phila Pa 1976). 2013;38(21):1826–31.

    Article  Google Scholar 

  40. Chen X-L, Guan L, Liu Y-Z, Yang J-C, Wang W-L, Hai Y. Interspinous dynamic stabilization adjacent to fusion versus double-segment fusion for treatment of lumbar degenerative disease with a minimum follow-up of three years. Int Orthop. 2016;40:1275–83.

    Article  PubMed  Google Scholar 

  41. Kong C, Lu S, Hai Y, Zang L. Biomechanical effect of interspinous dynamic stabilization adjacent to single-level fusion on range of motion of the transition segment and the adjacent segment. Clin Biomech (Bristol, Avon). 2015;30:355–9.

    Article  Google Scholar 

  42. Che W, Chen Q, Ma Y-Q, Jiang Y-Q, Yuan W, Zhou X-G, et al. Single-level rigid fixation combined with coflex: a biomechanical study. Med Sci Monit. 2016;22:1022–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. U.S. Food and Drug Administration. Coflex interlaminar technology. [Internet]. 2012. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf11/p110008b.pdf. Accessd 12 June 2021

  44. Kumar N, Shah SM, Ng YH, Pannierselvam VK, Dasde S, Shen L. Role of coflex as an adjunct to decompression for symptomatic lumbar spinal stenosis. Asian Spine J. 2014;8:161–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bae HW, Davis RJ, Lauryssen C, Leary S, Maislin G, Musacchio MJ. Three-year follow-up of the prospective, randomized, controlled trial of coflex interlaminar stabilization vs instrumented fusion in patients with lumbar stenosis. Neurosurgery. 2016;79:169–81.

    Article  PubMed  Google Scholar 

  46. Yuan W, Su Q-J, Liu T, Yang J-C, Kang N, Guan L, et al. Evaluation of coflex interspinous stabilization following decompression compared with decompression and posterior lumbar interbody fusion for the treatment of lumbar degenerative disease: a minimum 5-year follow-up study. J Clin Neurosci. 2017;35:24–9.

    Article  PubMed  Google Scholar 

  47. Dong Y, Zheng X, Gu H, Liang G, Zhuang J, Liang CX, et al. Is the interspinous device (coflex) outdated in the treatment of lumbar spinal stenosis? A seven-year follow-up. Spine Res. 2018;4(1):2. https://doi.org/10.21767/2471-8173.100042.

  48. Richter A, Schütz C, Hauck M, Halm H. Does an interspinous device (coflex) improve the outcome of decompressive surgery in lumbar spinal stenosis? One-year follow up of a prospective case control study of 60 patients. Eur Spine J. 2010;19:283–9.

    Article  PubMed  Google Scholar 

  49. Shabat S, Miller LE, Block JE, Gepstein R. Minimally invasive treatment of lumbar spinal stenosis with a novel interspinous spacer. Clin Interv Aging. 2011;6:227–33.

    PubMed  PubMed Central  Google Scholar 

  50. Tekmyster G, Sayed D, Cairns KD, Raso LJ, Kim C, Block JE. Interspinous process decompression with the superion® spacer for lumbar spinal stenosis: real-world experience from a device registry. Med Devices (Auckl). 2019;12:423–7.

    Google Scholar 

  51. U.S. Food and Drug Administration. Superion interspinous spacer/vertiflex. [Internet]. 2015. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf14/P140004D.pdf. Accessd 12 June 2021.

  52. Patel VV, Nunley PD, Whang PG, Haley TR, Bradley WD, Davis RP, et al. Superion(®) interspinous spacer for treatment of moderate degenerative lumbar spinal stenosis: durable three-year results of a randomized controlled trial. J Pain Res. 2015;8:657–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lauryssen C, Jackson RJ, Baron JM, Tallarico RA, Lavelle WF, Deutsch H, et al. Stand-alone interspinous spacer versus decompressive laminectomy for treatment of lumbar spinal stenosis. Expert Rev Med Devices. 2015;12:763–9.

    Article  PubMed  CAS  Google Scholar 

  54. Nunley PD, Patel VV, Orndorff DG, Lavelle WF, Block JE, Geisler FH. Five-year durability of stand-alone interspinous process decompression for lumbar spinal stenosis. Clin Interv Aging. 2017;12:1409–17.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gazzeri R, Galarza M, Neroni M, Fiore C, Faiola A, Puzzilli F, et al. Failure rates and complications of interspinous process decompression devices: a European multicenter study. Neurosurg Focus. 2015;39:E14.

    Article  PubMed  Google Scholar 

  56. Barbagallo GMV, Olindo G, Corbino L, Albanese V. Analysis of complications in patients treated with the X-Stop Interspinous process decompression system: proposal for a novel anatomic scoring system for patient selection and review of the literature. Neurosurgery. 2009;65(1):111–9–120.

    Article  PubMed  Google Scholar 

  57. Lee N, Shin DA, Kim KN, Yoon DH, Ha Y, Shin HC, et al. Paradoxical radiographic changes of coflex interspinous device with minimum 2-year follow-up in lumbar spinal stenosis. World Neurosurg. 2016;85:177–84.

    Article  PubMed  Google Scholar 

  58. Hochschuler S. Posterior motion preservation spine surgery:alternative to spinal fusion [Internet]. 2007 [cited 2020 Dec 27]. Available from: https://www.spine-health.com/treatment/back-surgery/posterior-motion-preservation-spine-surgery-alternative-spinal-fusion

  59. Schwarzenbach O, Berlemann U, Stoll TM, Dubois G. Posterior dynamic stabilization systems: DYNESYS. Orthop Clin North Am. 2005;36:363–72.

    Article  PubMed  Google Scholar 

  60. Wang H, Peng J, Zeng Q, Zhong Y, Xiao C, Ye Y, et al. Dynesys system vs posterior decompression and fusion for the treatment of lumbar degenerative diseases. Medicine (Baltimore). 2020;99(21):e19784.

    Article  Google Scholar 

  61. Khoueir P, Kim KA, Wang MY. Classification of posterior dynamic stabilization devices. Neurosurg Focus. 2007;22:E3.

    Article  PubMed  Google Scholar 

  62. Grob D, Benini A, Junge A, Mannion AF. Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine. 2005;30:324–31.

    Article  PubMed  Google Scholar 

  63. U.S. Food and Drug Administration. [Internet]. 510(k) Summary. Zimmer Dynesys Top-Loading Spinal System. 2009. Available from: https://fda.report/PMN/K092234/9/K092234.pdf. Accessd 12 June 2021.

  64. Bothmann M, Kast E, Boldt GJ, Oberle J. Dynesys fixation for lumbar spine degeneration. Neurosurg Rev. 2008;31:189–96.

    Article  PubMed  Google Scholar 

  65. Pham MH, Mehta VA, Patel NN, Jakoi AM, Hsieh PC, Liu JC, et al. Complications associated with the Dynesys dynamic stabilization system: a comprehensive review of the literature. Neurosurg Focus. 2016;40:E2.

    Article  PubMed  Google Scholar 

  66. Premia Spine. TOPS System. US Patients [Internet]. [cited 2021 Jun 1]. Available from: https://premiaspine.com/topstm-system/us-patients/

  67. Laratta JL, Gupta K, Smith WD. Tissue-sparing posterior cervical fusion with interfacet cages: a systematic review of the literature. Global Spine J. 2020;10:230–6.

    Article  PubMed  Google Scholar 

  68. Siemionow K, Janusz P, Phillips FM, Youssef JA, Isaacs R, Tyrakowski M, et al. Clinical and radiographic results of indirect decompression and posterior cervical fusion for single-level cervical radiculopathy using an expandable implant with 2-year follow-up. J Neurol Surg A Cent Eur Neurosurg. 2016;77:482–8.

    Article  PubMed  Google Scholar 

  69. Zygofix zLock [Internet]. 2020. Available from: https://www.zygofix.com/zlock. Accessd 12 June 2021.

  70. NIH: US National Library of Medicine. ClinicalTrias.gov [Internet]. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04229316

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Porrino.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

Author Andrew Haims, MD, discloses a financial relationship with Pfizer. Author Jonathan Grauer, MD, discloses a financial publishing role with North American Spine Society. Other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porrino, J., Rao, A., Moran, J. et al. Current concepts of spondylosis and posterior spinal motion preservation for radiologists. Skeletal Radiol 50, 2169–2184 (2021). https://doi.org/10.1007/s00256-021-03840-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03840-6

Keywords

Navigation