Skip to main content

Advertisement

Log in

Magnetic resonance imaging findings associated with posterior ankle impingement syndrome are prevalent in elite ballet dancers and athletes

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To report the prevalence of MRI features commonly associated with posterior ankle impingement syndrome in elite ballet dancers and athletes and to compare findings between groups.

Materials and methods

Thirty-eight professional ballet dancers (47.4% women) were age- and sex-matched to 38 elite soccer or cricket fast bowler athletes. All participants were training, playing, and performing at full workload and underwent 3.0-T standardised magnetic resonance imaging of one ankle. De-identified images were assessed by one senior musculoskeletal radiologist for findings associated with posterior ankle impingement syndrome (os trigonum, Stieda process, posterior talocrural and subtalar joint effusion-synovitis, flexor hallucis longus tendon pathology and tenosynovitis, and posterior ankle bone marrow oedema). Imaging scoring reliability testing was performed.

Results

Posterior talocrural effusion-synovitis (90.8%) and subtalar joint effusion-synovitis (93.4%) were common in both groups, as well as the presence of either an os trigonum or Stieda process (61.8%). Athletes had a higher prevalence of either os trigonum or Stieda process than dancers (74%, 50% respectively, P = 0.03). Male athletes had a higher prevalence of either os trigonum or Stieda process than male dancers (90%, 50% respectively, P = 0.01), or female athletes (56%, P = 0.02). Posterior subtalar joint effusion-synovitis size was larger in dancers than athletes (P = 0.02). Male and female dancers had similar imaging findings. There was at least moderate interobserver and intraobserver agreement for most MRI findings.

Conclusion

Imaging features associated with posterior impingement were prevalent in all groups. The high prevalence of os trigonum or Stieda process in male athletes suggests that this is a typical finding in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peace KAL, Hillier JC, Hulme A, Healy JC. MRI features of posterior ankle impingement syndrome in ballet dancers: a review of 25 cases. Clin Radiol. 2004;59(11):1025–33.

    Article  CAS  PubMed  Google Scholar 

  2. Hamilton W. Pain in the posterior aspect of the ankle in dancers. Differential diagnosis and operative treatment. J Bone Jt Surgery. 1996;78(10):1491–500.

  3. Brodsky AE, Khalil MA. Talar compression syndrome. Foot Ankle. 1987;7(6):338–44.

    Article  CAS  PubMed  Google Scholar 

  4. Wredmark T, Carlstedt CA, Bauer H, Saartok T. Os trigonum syndrome: a clinical entity in ballet dancers. Foot Ankle. 1991;11(6):404–6.

    Article  CAS  PubMed  Google Scholar 

  5. Marotta JJ, Micheli LJ. Os trigonum impingement in dancers. Am J Sports Med. 1992;20(5):533–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bureau NJ, Cardinal E, Hobden R, Aubin B. Posterior ankle impingement syndrome: MR imaging findings in seven patients. Radiology. 2000;215(2):497–503.

    Article  CAS  PubMed  Google Scholar 

  7. Ribbans WJ, Ribbans HA, Cruickshank JA, Wood EV. The management of posterior ankle impingement syndrome in sport: a review. Foot Ankle Surg. 2015;21(1):1–10.

    Article  PubMed  Google Scholar 

  8. Kalbouneh HM, Alajoulin O, Alsalem M, et al. Incidence of symptomatic os trigonum among nonathletic patients with ankle sprain. Surg Radiol Anat. 2019;41(12):1433–9.

    Article  PubMed  Google Scholar 

  9. Mansingh A. Posterior ankle impingement in fast bowlers in cricket. West Indian Med J. 2011;60(1):77–81.

    CAS  PubMed  Google Scholar 

  10. Calder JD, Sexton SA, Pearce CJ. Return to training and playing after posterior ankle arthroscopy for posterior impingement in elite professional soccer. Am J Sports Med. 2010;38(1):120–4.

    Article  PubMed  Google Scholar 

  11. Hedrick MR, McBryde AM. Posterior ankle impingement. Foot Ankle Int. 1994;15(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  12. Hamilton W. Stenosing tenosynovitis of the flexor hallucis longus tendon and posterior impingement upon the os trigonum in ballet dancers. Foot Ankle. 1982;3(2):74–80.

    Article  CAS  PubMed  Google Scholar 

  13. Messiou C, Robinson P, O’Connor PJ, Grainger A. Subacute posteromedial impingement of the ankle in athletes: MR imaging evaluation and ultrasound guided therapy. Skeletal Radiol. 2006;35(2):88–94.

    Article  PubMed  Google Scholar 

  14. van Dijk CN, Scholten PE, Krips R. A 2-portal endoscopic approach for diagnosis and treatment of posterior ankle pathology. Arthroscopy. 2000;16(8):871–6.

    Article  PubMed  Google Scholar 

  15. Coskun N, Yuksel M, Cevener M, et al. Incidence of accessory ossicles and sesamoid bones in the feet: a radiographic study of the Turkish subjects. Surg Radiol Anat. 2009;31(1):19–24.

    Article  PubMed  Google Scholar 

  16. Cicek ED, Bankaoglu M. Prevalence of elongated posterior talar process (Stieda process) detected by radiography. Int J Morphol. 2020;38(4):894–8.

    Article  Google Scholar 

  17. Zwiers R, Baltes TPA, Opdam KTM, Wiegerinck JI, van Dijk CN. Prevalence of os trigonum on CT imaging. Foot Ankle Int. 2018;39(3):338–42.

    Article  PubMed  Google Scholar 

  18. Zwiers R, Dobbe JGG, Streekstra GJ, et al. Exorotated radiographic views have additional diagnostic value in detecting an osseous impediment in patients with posterior ankle impingement. Jt Disord Orthop Sport Med. 2019;4(4):181–7.

    Google Scholar 

  19. Fu X, Ma L, Zeng Y, et al. Implications of classification of os trigonum: a study based on computed tomography three-dimensional imaging. Med Sci Monit. 2019;25:1423–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Russell JA, Shave RM, Yoshioka H, Kruse DW, Koutedakis Y, Wyon MA. Magnetic resonance imaging of the ankle in female ballet dancers en pointe. Acta Radiol. 2010;51(6):655–61.

    Article  PubMed  Google Scholar 

  21. Felton PJ, Lister SL, Worthington PJ, King MA. Comparison of biomechanical characteristics between male and female elite fast bowlers. J Sport Sci. 2019;37(6):665–70.

    Article  CAS  Google Scholar 

  22. Russell JA, Shave RM, Kruse DW, Koutedakis Y, Wyon MA. Ankle and foot contributions to extreme plantar- and dorsiflexion in female ballet dancers. Foot Ankle Int. 2011;32(2):183–8.

    Article  PubMed  Google Scholar 

  23. Tol JL, Slim E, van Soest AJ, van Dijk CN. The relationship of the kicking action in soccer and anterior ankle impingement syndrome. Am J Sports Med. 2002;30(1):45–50.

    Article  PubMed  Google Scholar 

  24. Spratford W, Hicks A. Increased delivery stride length places greater loads on the ankle joint in elite male cricket fast bowlers. J Sport Sci. 2014;32(12):1101–9.

    Article  Google Scholar 

  25. Worthington P, King M, Ranson C. The influence of cricket fast bowlers’ front leg technique on peak ground reaction forces. J Sport Sci. 2013;31(4):434–41.

    Article  Google Scholar 

  26. Orloff H, Sumida B, Chow J, Habibi L, Fujino A, Kramer B. Ground reaction forces and kinematics of plant leg position during instep kicking in male and female collegiate soccer players. Sport Biomech. 2008;7(2):238–47.

    Article  Google Scholar 

  27. Walter HL. Ground reaction forces in ballet dancers landing in flat shoes versus pointe shoes. J Danc Med Sci. 2011;15(2):61.

    Google Scholar 

  28. McPherson AM, Schrader JW, Docherty CL. Ground reaction forces in ballet differences resulting from footwear and jump conditions. J Danc Med Sci. 2019;23(1):34–9.

    Article  Google Scholar 

  29. Stuelcken MC, Sinclair PJ. A pilot study of the front foot ground reaction forces in elite female fast bowlers. J Sci Med Sport. 2009;12(2):258–61.

    Article  PubMed  Google Scholar 

  30. Clarsen B, Rønsen O, Myklebust G, Flørenes TW, Bahr R. The Oslo Sports Trauma Research Center questionnaire on health problems: a new approach to prospective monitoring of illness and injury in elite athletes. Br J Sports Med. 2014;48(9):754–60.

    Article  PubMed  Google Scholar 

  31. Bahr R. No injuries, but plenty of pain? On the methodology for recording overuse symptoms in sports. Br J Sports Med. 2009;43(13):966–72.

    Article  CAS  PubMed  Google Scholar 

  32. Harringe ML, Lindblad S, Werner S. Do team gymnasts compete in spite of symptoms from an injury? Br J Sports Med. 2004;38(4):398–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guermazi A, Roemer FW, Crema MD, Englund M, Hayashi D. Imaging of non-osteochondral tissues in osteoarthritis. Osteoarthr Cart. 2014;22(10):1590–605.

    Article  CAS  Google Scholar 

  34. Knapik DM, Guraya SS, Jones JA, Cooperman DR, Liu RW. Incidence and fusion of os trigonum in a healthy pediatric population. J Pediatr Orthop. 2019;39(9):e718–21.

    Article  PubMed  Google Scholar 

  35. Gursoy M, Dag F, Mete BD, Bulut T, Uluc ME. The anatomic variations of the posterior talofibular ligament associated with os trigonum and pathologies of related structures. Surg Radiol Anat. 2015;37(8):955–62.

    Article  PubMed  Google Scholar 

  36. Schweitzer ME, van Leersum M, Ehrlich SS, Wapner K. Fluid in normal and abnormal ankle joints: amount and distribution as seen on MR images. Am J Roentgenol. 1994;162(1):111–4.

    Article  CAS  Google Scholar 

  37. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46.

    Article  Google Scholar 

  38. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  CAS  Google Scholar 

  39. Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284–90.

    Article  Google Scholar 

  40. McDougall A. The os trigonum. J Bone Jt Surgery. 1955;37(2):257–65.

    Article  Google Scholar 

  41. Tsuruta T, Shiokawa Y, Kato A, et al. Radiological study of the accessory skeletal elements in the foot and ankle (author’s transl). Nihon Seikeigeka Gakkai Zasshi. 1981;55(4):357–70.

    CAS  PubMed  Google Scholar 

  42. Ozer M, Yildirim A. Evaluation of the prevalence of os trigonum and talus osteochondral lesions in ankle magnetic resonance imaging of patients with ankle impingement syndrome. J Foot Ankle Surg. 2019;58(2):273–7.

    Article  PubMed  Google Scholar 

  43. McCormack M, Briggs J, Hakim A, Grahame R. Joint laxity and the benign joint hypermobility syndrome in student and professional ballet dancers. J Rheumatol. 2004;31(1):173–8.

    PubMed  Google Scholar 

  44. Russell JA, Kruse DW, Koutedakis Y, Mcewan IM, Wyon MA. Pathoanatomy of posterior ankle impingement in ballet dancers. Clin Anat. 2010;23(6):613–21.

    Article  PubMed  Google Scholar 

  45. Kudas S, Donmez G, Isik C, Celebi M, Cay N, Bozkurt M. Posterior ankle impingement syndrome in football players: case series of 26 elite athletes. Acta Orthop Traumatol Turc. 2016;50(6):649–54.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kobayashi T, Gamada K. Lateral ankle sprain and chronic ankle instability. Foot Ankle Spec. 2014;7(4):298–326.

    Article  PubMed  Google Scholar 

  47. Hertel J. Functional instability following lateral ankle sprain. Sport Med. 2000;29(5):361–71.

    Article  CAS  Google Scholar 

  48. Hertel J, Denegar CR, Monroe MM, Stokes WL. Talocrural and subtalar joint instability after lateral ankle sprain. Med Sci Sport Exerc. 1999;31(11):1501–8.

    Article  CAS  Google Scholar 

  49. Ménétrey J, Fritschy D. Subtalar subluxation in ballet dancers. Am J Sports Med. 1999;27(2):143–9.

    Article  PubMed  Google Scholar 

  50. Russell JA, Yoshioka H. Assessment of female ballet dancers’ ankles in the en pointe position using high field strength magnetic resonance imaging. Acta Radiol. 2016;57(8):978–84.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A sincere thank you to the dancers and athletes of The Australian Ballet, Cricket Australia, Cricket Victoria and Melbourne City Football Club for their participation in this study. The authors sincerely thank A. Kountouris of Cricket Australia for his collaborative efforts; K. Sims, N. Adcock, M. Tucker, D. Stanborough, L. Kennedy, L. Poon, and B. Robertson for assisting in participant recruitment; S. Emery, M. Hook, V. Tran, and J. Baillie for their assistance with data collection; A. Garnham, J. Walsh and T. O’Shea for their assistance in image acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peta Baillie.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (DOCX 918 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baillie, P., Cook, J., Ferrar, K. et al. Magnetic resonance imaging findings associated with posterior ankle impingement syndrome are prevalent in elite ballet dancers and athletes. Skeletal Radiol 50, 2423–2431 (2021). https://doi.org/10.1007/s00256-021-03811-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03811-x

Keywords

Navigation