Skip to main content

Advertisement

Log in

Reliability of supraspinatus intramuscular fatty infiltration estimates on T1-weighted MRI in potential candidates for rotator cuff repair surgery: full-thickness tear versus high-grade partial-thickness tear

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Patients with supraspinatus high-grade partial-thickness tear or full-thickness tear are potential candidates for rotator cuff repair surgery. We sought (1) to compare supraspinatus intramuscular fatty infiltration between these groups by Goutallier grade, fuzzy C-means and an orthopaedic surgeon visible percentage estimate, (2) and to determine the reliability of each method.

Materials and methods

We performed a retrospective cross-sectional study of supraspinatus intramuscular fatty infiltration on T1-weighted MR images for 93 shoulders with either supraspinatus partial-thickness tear > 50% tendon thickness or full-thickness tear by Goutallier grade, fuzzy C-means and an orthopaedic surgeon visible percentage estimate, by two observers for each method. Descriptive statistics were performed to compare groups. Inter- and intra-observer reliability was determined. Correlative analysis among the three methods was performed.

Results

Significant differences of mean supraspinatus intramuscular fatty infiltration were present when comparing supraspinatus high-grade partial-thickness tear versus full-thickness tears by Goutallier grade (p = 0.004), fuzzy C-means (p = 0.002) and orthopaedic surgeon visible percentage estimate (p = 0.001). There was no significant difference for age (55.0 ± 11.1 years versus 56.1 ± 9.6 years) or sex (35.4% male versus 47.8% male) for supraspinatus high-grade partial-thickness tear and full-thickness tear, respectively. A significant difference existed among the subgroup of full-thickness tears stratified by tear size by all three methods (p < 0.020). Inter- and intra-observer reliability was Goutallier grade 0.590 and 0.624, fuzzy C-means 0.768 and 0.925 and orthopaedic surgeon visible percentage estimate 0.858 and 0.686, respectively. For shoulders with mean Goutallier grade ≥ 2.0, inter-observer reliability was 0.878 and 0.802 for fuzzy C-means and orthopaedic surgeon visible percentage estimate, respectively. A strong correlation was present among the three methods of supraspinatus FI analysis (rho ≥ 0.72).

Conclusion

Supraspinatus full-thickness tears have higher amounts of intramuscular fatty infiltration compared to high-grade partial-thickness tear. Quantitative fuzzy C-means shows excellent inter-observer reliability for estimating supraspinatus intramuscular fat. Experienced orthopaedic surgeons’ semi-quantitative estimation of supraspinatus visible intramuscular fat may offer improved reliability as compared to semi-quantitative Goutallier grade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McElvany MD, McGoldrick E, Gee AO, Neradilek MB, Matsen FA 3rd. Rotator cuff repair: published evidence on factors associated with repair integrity and clinical outcome. Am J Sports Med. 2015;43:491–500.

    Article  PubMed  Google Scholar 

  2. Opsha O, Malik A, Baltazar R, et al. MRI of the rotator cuff and internal derangement. Eur J Radiol. 2008;68:36–56.

    Article  PubMed  Google Scholar 

  3. Yamamoto A, Takagishi K, Osawa T, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg. 2010;19:116–20.

    Article  PubMed  Google Scholar 

  4. Melis B, Nemoz C, Walch G. Muscle fatty infiltration in rotator cuff tears: descriptive analysis of 1688 cases. Orthop Traumatol Surg Res. 2009;95:319–24.

    Article  CAS  PubMed  Google Scholar 

  5. Jain NB, Higgins LD, Losina E, Collins J, Blazar PE, Katz JN. Epidemiology of musculoskeletal upper extremity ambulatory surgery in the United States. BMC Musculoskelet Disord. 2014;15:4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Colvin AC, Egorova N, Harrison AK, Moskowitz A, Flatow EL. National trends in rotator cuff repair. J Bone Joint Surg Am. 2012;94:227–33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Franceschi F, Papalia R, Del Buono A, et al. Articular-sided rotator cuff tears: which is the best repair? A three-year prospective randomised controlled trial. Int Orthop. 2013;37:1487–93.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shin SJ. A comparison of 2 repair techniques for partial-thickness articular-sided rotator cuff tears. Arthroscopy. 2012;28:25–33.

    Article  PubMed  Google Scholar 

  9. Shin SJ, Kook SH, Rao N, Seo MJ. Clinical outcomes of modified Mason-Allen single-row repair for bursal-sided partial-thickness totator cuff tears: comparison with the double-row suture-bridge technique. Am J Sports Med. 2015;43:1976–82.

    Article  PubMed  Google Scholar 

  10. Liem D, Lichtenberg S, Magosch P, Habermeyer P. Magnetic resonance imaging of arthroscopic supraspinatus tendon repair. J Bone Joint Surg Am. 2007;89:1770–6.

    Article  PubMed  Google Scholar 

  11. Gladstone JN, Bishop JY, Lo IK, Flatow EL. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med. 2007;35:719–28.

    Article  PubMed  Google Scholar 

  12. Gerber C, Meyer DC, Schneeberger AG, Hoppeler H, von Rechenberg B. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep. J Bone Joint Surg Am. 2004;86(9):1973–82.

    Article  CAS  PubMed  Google Scholar 

  13. Goutallier D, Postel JM, Gleyze P, Leguilloux P, Van Driessche S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elbow Surg. 2003;12:550–4.

    Article  PubMed  Google Scholar 

  14. Coleman SH, Fealy S, Ehteshami JR, et al. Chronic rotator cuff injury and repair model in sheep. J Bone Joint Surg Am. 2003;85(12):2391–402.

    Article  PubMed  Google Scholar 

  15. Uhthoff HK, Coletta E, Trudel G. Effect of timing of surgical SSP tendon repair on muscle alterations. J Orthop Res. 2014;32:1430–5.

    Article  PubMed  Google Scholar 

  16. Morag Y, Jacobson JA, Miller B, De Maeseneer M, Girish G, Jamadar D. MR imaging of rotator cuff injury: what the clinician needs to know. Radiographics. 2006;26:1045–65.

    Article  PubMed  Google Scholar 

  17. Deniz G, Kose O, Tugay A, Guler F, Turan A. Fatty degeneration and atrophy of the rotator cuff muscles after arthroscopic repair: does it improve, halt or deteriorate? Arch Orthop Trauma Surg. 2014;134:985–90.

    Article  PubMed  Google Scholar 

  18. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures Pre-and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;304:78–83.

    Google Scholar 

  19. Ashry R, Schweitzer ME, Cunningham P, Cohen J, Babb J, Cantos A. Muscle atrophy as a consequence of rotator cuff tears: should we compare the muscles of the rotator cuff with those of the deltoid? Skeletal Radiol. 2007;36:841–5.

    Article  PubMed  Google Scholar 

  20. Davis DL, Kesler T, Gilotra MN, et al. Quantification of shoulder muscle intramuscular fatty infiltration on T1-weighted MRI: a viable alternative to the Goutallier classification system. Skeletal Radiol. 2019;48:535–41.

    Article  PubMed  Google Scholar 

  21. Feng Y, Guo H, Zhang H, et al. A modified fuzzy C-means method for segmenting MR images using non-local information. Technol Health Care. 2016;24(Suppl 2):S785–93.

    Article  PubMed  Google Scholar 

  22. Clendenen TV, Zeleniuch-Jacquotte A, Moy L, Pike MC, Rusinek H, Kim S. Comparison of 3-point Dixon imaging and fuzzy C-means clustering methods for breast density measurement. J Magn Reson Imaging. 2013;38:474–81.

    Article  PubMed  Google Scholar 

  23. Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elbow Surg. 1999;8:599–605.

    Article  CAS  PubMed  Google Scholar 

  24. Vidt ME, Santago AC 2nd, Hegedus EJ, et al. Can self-report instruments of shoulder function capture functional differences in older adults with and without a rotator cuff tear? J Electromyogr Kinesiol. 2016;29:90–9.

    Article  PubMed  Google Scholar 

  25. Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6:284–90.

    Article  Google Scholar 

  26. Uhthoff HK, Matsumoto F, Trudel G, Himori K. Early reattachment does not reverse atrophy and fat accumulation of the supraspinatus–an experimental study in rabbits. J Orthop Res. 2003;21:386–92.

    Article  PubMed  Google Scholar 

  27. Valencia AP, Lai JK, Iyer SR, et al. Fatty infiltration is a prognostic marker of muscle function after rotator cuff tear. Am J Sports Med. 2018;46:2161–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buck M, Chojkier M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J. 1996;15:1753–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baumann CW, Kwak D, Liu HM, Thompson LV. Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol. 2016;121:1047–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lamounier-Zepter V, Ehrhart-Bornstein M, Karczewski P, Haase H, Bornstein SR, Morano I. Human adipocytes attenuate cardiomyocyte contraction: characterization of an adipocyte-derived negative inotropic activity. FASEB J. 2006;20:1653–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hantes ME, Karidakis GK, Vlychou M, Varitimidis S, Dailiana Z, Malizos KN. A comparison of early versus delayed repair of traumatic rotator cuff tears. Knee Surg Sports Traumatol Arthrosc. 2011;19:1766–70.

    Article  PubMed  Google Scholar 

  32. Davis DL, Gilotra MN, Hovis JP, Almardawi R, Hasan SA. Association of rotator cuff tear patterns and intramuscular fatty infiltration on magnetic resonance imaging. J Clin Imaging Sci. 2019;9:38.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dunn WR, Schackman BR, Walsh C, et al. Variation in orthopaedic surgeons’ perceptions about the indications for rotator cuff surgery. J Bone Joint Surg Am. 2005;87:1978–84.

    Article  PubMed  Google Scholar 

  34. McMahon PJ, Prasad A, Francis KA. What is the prevalence of senior-athlete rotator cuff injuries and are they associated with pain and dysfunction? Clin Orthop Relat Res. 2014;472:2427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Varkey DT, Patterson BM, Creighton RA, Spang JT, Kamath GV. Initial medical management of rotator cuff tears: a demographic analysis of surgical and nonsurgical treatment in the United States Medicare population. J Shoulder Elbow Surg. 2016;25:e378–85.

    Article  PubMed  Google Scholar 

  36. Kweon C, Gagnier JJ, Robbins CB, Bedi A, Carpenter JE, Miller BS. Surgical versus nonsurgical management of rotator cuff tears: predictors of treatment allocation. Am J Sports Med. 2015;43:2368–72.

    Article  PubMed  Google Scholar 

  37. Piper CC, Hughes AJ, Ma Y, Wang H, Neviaser AS. Operative versus nonoperative treatment for the management of full-thickness rotator cuff tears: a systematic review and meta-analysis. J Shoulder Elbow Surg. 2018;27:572–6.

    Article  PubMed  Google Scholar 

  38. Davis DL, Almardawi R, Henn RF, 3rd, et al. Correlation of quantitative versus semiquantitative measures of supraspinatus intramuscular fatty infiltration to shoulder range of motion and strength: a pilot study. Curr Probl Diagn Radiol. 2020 [epub ahead of print].

  39. Kim HM, Dahiya N, Teefey SA, Keener JD, Galatz LM, Yamaguchi K. Relationship of tear size and location to fatty degeneration of the rotator cuff. J Bone Joint Surg Am. 2010;92:829–39.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee S, Lucas RM, Lansdown DA, et al. Magnetic resonance rotator cuff fat fraction and its relationship with tendon tear severity and subject characteristics. J Shoulder Elbow Surg. 2015;24:1442–51.

    Article  PubMed  Google Scholar 

  41. Deutsch A. Arthroscopic repair of partial-thickness tears of the rotator cuff. J Shoulder Elbow Surg. 2007;16:193–201.

    Article  PubMed  Google Scholar 

  42. Longo UG, Risi Ambrogioni L, Candela V, et al. Conservative versus surgical management for patients with rotator cuff tears: a systematic review and META-analysis. BMC Musculoskelet Disord. 2021;22:50.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu JN, Garcia GH, Gowd AK, et al. Treatment of partial thickness rotator cuff tears in overhead athletes. Curr Rev Musculoskelet Med. 2018;11:55–62.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Katthagen JC, Bucci G, Moatshe G, Tahal DS, Millett PJ. Improved outcomes with arthroscopic repair of partial-thickness rotator cuff tears: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2018;26:113–24.

    Article  PubMed  Google Scholar 

  45. Matthewson G, Beach CJ, Nelson AA, et al. Partial thickness rotator cuff tears: current concepts. Adv Orthop. 2015;2015:458786.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim HM, Galatz LM, Lim C, Havlioglu N, Thomopoulos S. The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model. J Shoulder Elbow Surg. 2012;21:847–58.

    Article  PubMed  Google Scholar 

  47. Orgiu S, Lafortuna CL, Rastelli F, Cadioli M, Falini A, Rizzo G. Automatic muscle and fat segmentation in the thigh from T1-Weighted MRI. J Magn Reson Imaging. 2016;43:601–10.

    Article  PubMed  Google Scholar 

  48. Davis DL, Zhuo J, Almardawi R, Mulligan ME, Resnik CR, Abdullah SB, Al Khalifah H, Henn RF 3rd, Gilotra MN, Hasan SA, Gullapalli RP. Association of patient self-reported shoulder scores to quantitative and semi-quantitative MRI measures of rotator cuff intramuscular fatty infiltration: a pilot study. AJR Am J Roentgen. 2019;213:1307–14.

    Article  Google Scholar 

  49. Horiuchi S, Nozaki T, Tasaki A, et al. Reliability of MR quantification of rotator cuff muscle fatty degeneration using a 2-point Dixon technique in comparison with the Goutallier classification: validation study by multiple readers. Acad Radiol. 2017;24:1343–51.

    Article  PubMed  Google Scholar 

  50. Lippe J, Spang JT, Leger RR, Arciero RA, Mazzocca AD, Shea KP. Inter-rater agreement of the Goutallier, Patte, and Warner classification scores using preoperative magnetic resonance imaging in patients with rotator cuff tears. Arthroscopy. 2012;28:154–9.

    Article  PubMed  Google Scholar 

  51. Slabaugh MA, Friel NA, Karas V, Romeo AA, Verma NN, Cole BJ. Interobserver and intraobserver reliability of the Goutallier classification using magnetic resonance imaging: proposal of a simplified classification system to increase reliability. Am J Sports Med. 2012;40:1728–34.

    Article  PubMed  Google Scholar 

  52. Spencer EE Jr, Dunn WR, Wright RW, et al. Interobserver agreement in the classification of rotator cuff tears using magnetic resonance imaging. Am J Sports Med. 2008;36:99–103.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Ranyah Almardawi, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, for her contribution to data management for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derik L. Davis.

Ethics declarations

Conflict of interest

Dr. Derik L. Davis receives partial salary support from the University of Maryland Claude D. Pepper Older Americans Independence Center (NIA 3P30AG028747-13S1) and the National Institute on Aging (NIA 1R03AG067927-01). Dr. Mohit N. Gilotra, MD is a consultant for Tigon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, D.L., Gilotra, M.N., Calderon, R. et al. Reliability of supraspinatus intramuscular fatty infiltration estimates on T1-weighted MRI in potential candidates for rotator cuff repair surgery: full-thickness tear versus high-grade partial-thickness tear. Skeletal Radiol 50, 2233–2243 (2021). https://doi.org/10.1007/s00256-021-03805-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03805-9

Keywords

Navigation