Skip to main content

Differential diagnosis of T2 hypointense masses in musculoskeletal MRI

Abstract

Many soft tissue masses have an indeterminate appearance on MRI, often displaying varying degrees and extent of T2 hyperintensity. However, a subset of neoplasms and tumor-like lesions may exhibit prominent areas of T2 hypointensity relative to skeletal muscle. The hypointensity observed on T2-weighted MRI can be caused by a variety of substances, including evolving blood products, calcifications or other inorganic crystals, or fibrous tissue. Carefully evaluating the presence and pattern of T2 hypointensity in soft tissue masses and considering potential causes in their associated clinical contexts can help to narrow the differential diagnosis among neoplastic and non-neoplastic possibilities. These include endometriosis, aneurysmal bone cysts, tenosynovial giant cell tumor, arteriovenous malformation and pseudoaneurysm, calcium pyrophosphate and hydroxyapatite deposition diseases, tumoral calcinosis, gout, amyloidosis, hemangiomas with phleboliths, low-grade fibromyxoid sarcoma, ossifying fibromyxoid tumor, collagenous fibroma, desmoid-type fibromatosis, myxofibrosarcoma, peripheral nerve sheath tumors, dedifferentiated liposarcoma, and treated sarcoma.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    Wadhwa V, Cho G, Moore D, Pezeshk P, Coyner K, Chhabra A. T2 black lesions on routine knee MRI: differential considerations. Eur Radiol. 2016;26(7):2387–99.

    PubMed  Article  Google Scholar 

  2. 2.

    Zhao F, Ahlawat S, Farahani SJ, Weber KL, Montgomery EA, Carrino JA, et al. Can MR imaging be used to predict tumor grade in soft-tissue sarcoma? Radiology. 2014;272(1):192–201.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Narváez JA, Narváez J, Ortega R, De Lama E, Roca Y, Vidal N. Hypointense synovial lesions on T2-weighted images: differential diagnosis with pathologic correlation. AJR Am J Roentgenol. 2003;181(3):761–9.

    PubMed  Article  Google Scholar 

  4. 4.

    Papakonstantinou O, Isaac A, Dalili D, Noebauer-Huhmann I-M. T2-weighted hypointense tumors and tumor-like lesions. Semin Musculoskelet Radiol. 2019;23(1):58–75.

    PubMed  Article  Google Scholar 

  5. 5.

    Bitar R, Leung G, Perng R, Tadros S, Moody AR, Sarrazin J, et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiogr Rev Publ Radiol Soc N Am Inc. 2006;26(2):513–37.

    Google Scholar 

  6. 6.

    Liu S, Buch S, Chen Y, Choi H-S, Dai Y, Habib C, et al. Susceptibility-weighted imaging: current status and future directions. NMR Biomed. 2017;30(4):e3552.

    Article  CAS  Google Scholar 

  7. 7.

    Marinis A, Vassiliou J, Kannas D, Theodosopoulos TK, Kondi-Pafiti A, Kairi E, et al. Endometriosis mimicking soft tissue tumors: diagnosis and treatment. Eur J Gynaecol Oncol. 2006;27(2):168–70.

    CAS  PubMed  Google Scholar 

  8. 8.

    Woertler K, Brinkschmidt C. Imaging features of subperiosteal aneurysmal bone cyst. Acta Radiol Stockh Swed 1987. 2002;43(3):336–9.

    CAS  Google Scholar 

  9. 9.

    Nielsen GP, Fletcher CDM, Smith MA, Rybak L, Rosenberg AE. Soft tissue aneurysmal bone cyst: a clinicopathologic study of five cases. Am J Surg Pathol. 2002;26(1):64–9.

    PubMed  Article  Google Scholar 

  10. 10.

    Song W, Suurmeijer AJH, Bollen SM, Cleton-Jansen A-M, Bovée JVMG, Kroon HM. Soft tissue aneurysmal bone cyst: six new cases with imaging details, molecular pathology, and review of the literature. Skelet Radiol. 2019;48(7):1059–67.

    Article  Google Scholar 

  11. 11.

    Mankin HJ, Hornicek FJ, Ortiz-Cruz E, Villafuerte J, Gebhardt MC. Aneurysmal bone cyst: a review of 150 patients. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(27):6756–62.

    Article  Google Scholar 

  12. 12.

    Kransdorf MJ, Sweet DE. Aneurysmal bone cyst: concept, controversy, clinical presentation, and imaging. AJR Am J Roentgenol. 1995;164(3):573–80.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Ilaslan H, Sundaram M, Unni KK. Solid variant of aneurysmal bone cysts in long tubular bones: giant cell reparative granuloma. AJR Am J Roentgenol. 2003;180(6):1681–7.

    PubMed  Article  Google Scholar 

  14. 14.

    Tap WD, Gelderblom H, Palmerini E, Desai J, Bauer S, Blay J-Y, et al. Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial. Lancet Lond Engl. 2019;19.

  15. 15.

    Becce F, Federau C, Letovanec I, Grandjean A, So AK, Rüdiger HA. Dual-energy computed tomography molecular imaging of pigmented villonodular synovitis. Rheumatol Oxf Engl. 2015;54(3):457.

    Article  Google Scholar 

  16. 16.

    Li C-F, Wang J-W, Huang W-W, Hou C-C, Chou S-C, Eng H-L, et al. Malignant diffuse-type tenosynovial giant cell tumors: a series of 7 cases comparing with 24 benign lesions with review of the literature. Am J Surg Pathol. 2008;32(4):587–99.

    PubMed  Article  Google Scholar 

  17. 17.

    Richman DM, Bresler SC, Rosenthal MH, Howard SAH. Malignant tenosynovial giant cell tumor of the leg: a radiologic-pathologic correlation and review of the literature. J Clin Imaging Sci. 2015;5:13.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Madani H, Farrant J, Chhaya N, Anwar I, Marmery H, Platts A, et al. Peripheral limb vascular malformations: an update of appropriate imaging and treatment options of a challenging condition. Br J Radiol. 2015;88(1047):20140406.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Kwee RM, Kwee TC. Calcified or ossified benign soft tissue lesions that may simulate malignancy. Skelet Radiol. 2019;48(12):1875–90.

    Article  Google Scholar 

  20. 20.

    McCarthy GM, Dunne A. Calcium crystal deposition diseases—beyond gout. Nat Rev Rheumatol. 2018;14(10):592–602.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Finkenstaedt T, Biswas R, Abeydeera NA, Siriwanarangsun P, Healey R, Statum S, et al. Ultrashort time to echo magnetic resonance evaluation of calcium pyrophosphate crystal deposition in human menisci. Investig Radiol. 2019;54(6):349–55.

    CAS  Article  Google Scholar 

  22. 22.

    Bahk W-J, Chang E-D, Lee A-H, Kang Y-K, Park J-M, Chung Y-G. Huge tophaceous pseudogout associated with tenosynovial chondromatosis arising from flexor digitorum tendon sheaths of the foot: a case report. Skelet Radiol. 2013;42(12):1755–9.

    Article  Google Scholar 

  23. 23.

    DE Carli A, Pulcinelli F, Rose GD, Pitino D, Ferretti A. Calcific tendinitis of the shoulder. Joints. 2014;2(3):130–6.

    Article  Google Scholar 

  24. 24.

    Hongsmatip P, Cheng KY, Kim C, Lawrence DA, Rivera R, Smitaman E. Calcium hydroxyapatite deposition disease: imaging features and presentations mimicking other pathologies. Eur J Radiol. 2019;120:108653.

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Malghem J, Omoumi P, Lecouvet F, Vande BB. Intraosseous migration of tendinous calcifications: cortical erosions, subcortical migration and extensive intramedullary diffusion, a SIMS series. Skelet Radiol. 2015;44(10):1403–12.

    Article  Google Scholar 

  26. 26.

    Freire V, Moser TP, Lepage-Saucier M. Radiological identification and analysis of soft tissue musculoskeletal calcifications. Insights Imaging. 2018;9(4):477–92.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Goshima K, Kitaoka K, Nakase J, Tsuchiya H. Rapid destruction of the humeral head caused by subchondral insufficiency fracture: a report of two cases. Case Rep Orthop. 2015;2015:251696.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Yamamoto T, Bullough PG. The role of subchondral insufficiency fracture in rapid destruction of the hip joint: a preliminary report. Arthritis Rheum. 2000;43(11):2423–7.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Olsen KM, Chew FS. Tumoral calcinosis: pearls, polemics, and alternative possibilities1. Radiographics. 2006;26(3):871–85.

    PubMed  Article  Google Scholar 

  30. 30.

    Ea H-K, Gauffenic A, Nguyen QD, Pham NG, Olivier O, Frochot V, et al. Calcium pyrophosphate dihydrate crystal deposition in gouty tophi. Arthritis Rheumatol Hoboken NJ. 2020.

  31. 31.

    Christiansen SN, Müller FC, Østergaard M, Slot O, Møller JM, Børgesen HF, et al. Dual-energy CT in gout patients: do all colour-coded lesions actually represent monosodium urate crystals? Arthritis Res Ther. 2020;22(1):212.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Baker KR, Rice L. The amyloidoses: clinical features, diagnosis and treatment. Methodist DeBakey Cardiovasc J. 2012;8(3):3–7.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Maheshwari AV, Muro-Cacho CA, Kransdorf MJ, Temple HT. Soft-tissue amyloidoma of the extremities: a case report and review of literature. Skelet Radiol. 2009;38(3):287–92.

    Article  Google Scholar 

  34. 34.

    Desai SS, Rizzo MG, Rush AJ, Rosenberg AE, Al MM. Amyloidoma: a review and case report. Skelet Radiol. 2021;50(2):437–44.

    Article  Google Scholar 

  35. 35.

    Luk ACO, Cleaveland P, Olson L, Neilson D, Srirangam SJ. Pelvic Phlebolith: a trivial pursuit for the urologist? J Endourol. 2017;31(4):342–7.

    PubMed  Article  Google Scholar 

  36. 36.

    Koo KSH, Dowd CF, Mathes EF, Rosbe KW, Hoffman WY, Frieden IJ, et al. MRI phenotypes of localized intravascular coagulopathy in venous malformations. Pediatr Radiol. 2015;45(11):1690–5.

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Olivieri B, White CL, Restrepo R, McKeon B, Karakas SP, Lee EY. Low-flow vascular malformation pitfalls: from clinical examination to practical imaging evaluation—part 2, venous malformation mimickers. AJR Am J Roentgenol. 2016;206(5):952–62.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Lee B-J, Park W-S, Jin J-M, Ha C-W, Lee S-H. Low grade fibromyxoid sarcoma in thigh. Clin Orthop Surg. 2009;1(4):240–3.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Evans HL. Low-grade fibromyxoid sarcoma: a clinicopathologic study of 33 cases with long-term follow-up. Am J Surg Pathol. 2011;35(10):1450–62.

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Hwang S, Kelliher E, Hameed M. Imaging features of low-grade fibromyxoid sarcoma (Evans tumor). Skelet Radiol. 2012;41(10):1263–72.

    Article  Google Scholar 

  41. 41.

    Linos K, Kerr DA, Baker M, Wong S, Henderson E, Sumegi J, et al. Superficial malignant ossifying fibromyxoid tumors harboring the rare and recently described ZC3H7B-BCOR and PHF1-TFE3 fusions. J Cutan Pathol. 2020;47(10):934–45.

    PubMed  Article  Google Scholar 

  42. 42.

    Folpe AL, Weiss SW. Ossifying fibromyxoid tumor of soft parts: a clinicopathologic study of 70 cases with emphasis on atypical and malignant variants. Am J Surg Pathol. 2003;27(4):421–31.

    PubMed  Article  Google Scholar 

  43. 43.

    Kresse ME, Kransdorf MJ, Fox MG, Flug JA, Long JR, Murphey MD. Desmoplastic fibroblastoma: an uncommon tumor with a relatively characteristic MRI appearance. AJR Am J Roentgenol. 2020;215(1):178–83.

    PubMed  Article  Google Scholar 

  44. 44.

    Lazar AJF, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E, et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173(5):1518–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Gounder MM, Mahoney MR, Van Tine BA, Ravi V, Attia S, Deshpande HA, et al. Sorafenib for advanced and refractory desmoid tumors. N Engl J Med. 2018;379(25):2417–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Desmoid Tumor Working Group. The management of desmoid tumours: a joint global consensus-based guideline approach for adult and paediatric patients. Eur J Cancer Oxf Engl 1990. 2020;127:96–107.

    Google Scholar 

  47. 47.

    Saltiel S, Bize PE, Goetti P, Gallusser N, Cherix S, Denys A, et al. Cryoablation of extra-abdominal desmoid tumors: a single-center experience with literature review. Diagn Basel Switz. 2020;10(8).

  48. 48.

    Kujak JL, Liu PT, Johnson GB, Callstrom MR. Early experience with percutaneous cryoablation of extra-abdominal desmoid tumors. Skelet Radiol. 2010;39(2):175–82.

    Article  Google Scholar 

  49. 49.

    Toulmonde M, Pulido M, Ray-Coquard I, Andre T, Isambert N, Chevreau C, et al. Pazopanib or methotrexate-vinblastine combination chemotherapy in adult patients with progressive desmoid tumours (DESMOPAZ): a non-comparative, randomised, open-label, multicentre, phase 2 study. Lancet Oncol. 2019;20(9):1263–72.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Sheth PJ, Del Moral S, Wilky BA, Trent JC, Cohen J, Rosenberg AE, et al. Desmoid fibromatosis: MRI features of response to systemic therapy. Skelet Radiol. 2016;45(10):1365–73.

    Article  Google Scholar 

  51. 51.

    Look Hong NJ, Hornicek FJ, Raskin KA, Yoon SS, Szymonifka J, Yeap B, et al. Prognostic factors and outcomes of patients with myxofibrosarcoma. Ann Surg Oncol. 2013;20(1):80–6.

    PubMed  Article  Google Scholar 

  52. 52.

    Martin-Carreras T, Li H, Cooper K, Fan Y, Sebro R. Radiomic features from MRI distinguish myxomas from myxofibrosarcomas. BMC Med Imaging. 2019;19(1):67.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Soldatos T, Fisher S, Karri S, Ramzi A, Sharma R, Chhabra A. Advanced MR imaging of peripheral nerve sheath tumors including diffusion imaging. Semin Musculoskelet Radiol. 2015;19(2):179–90.

    PubMed  Article  Google Scholar 

  54. 54.

    Fetsch JF, Miettinen M. Sclerosing perineurioma: a clinicopathologic study of 19 cases of a distinctive soft tissue lesion with a predilection for the fingers and palms of young adults. Am J Surg Pathol. 1997;21(12):1433–42.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Miyake M, Tateishi U, Maeda T, Arai Y, Seki K, Hasegawa T, et al. Sclerosing perineurioma: tumor of the hand with a short T2. Skelet Radiol. 2006;35(7):543–6.

    Article  Google Scholar 

  56. 56.

    Crombé A, Périer C, Kind M, De Senneville BD, Le Loarer F, Italiano A, et al. T2 -based MRI Delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy. J Magn Reson Imaging. 2018.

  57. 57.

    Roberge D, Skamene T, Nahal A, Turcotte RE, Powell T, Freeman C. Radiological and pathological response following pre-operative radiotherapy for soft-tissue sarcoma. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2010;97(3):404–7.

    Article  Google Scholar 

  58. 58.

    Taylor K, Kransdorf MJ, Schwartz AJ, O’Connor MI, Zarka MA. Mosaic-pattern dedifferentiation in liposarcoma and chondrosarcoma: imaging features of an uncommon form of dedifferentiation. Skelet Radiol. 2018;47(6):877–82.

    Article  Google Scholar 

  59. 59.

    Asano N, Yoshida A, Mitani S, Kobayashi E, Shiotani B, Komiyama M, et al. Frequent amplification of receptor tyrosine kinase genes in welldifferentiated/ dedifferentiated liposarcoma. Oncotarget. 2017;8(8):12941–52.

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Shim EJ, Yoon MA, Yoo HJ, Chee CG, Lee MH, Lee SH, et al. An MRI-based decision tree to distinguish lipomas and lipoma variants from well-differentiated liposarcoma of the extremity and superficial trunk: classification and regression tree (CART) analysis. Eur J Radiol. 2020;127:109012.

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Funding

Ty K. Subhawong MD has received honoraria from iiCME for speaking activities unrelated to preparation of this manuscript; he has served as a consultant for Arog Pharmaceuticals and Imaging Law, but has received no funding for preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ty K. Subhawong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finkelstein, D., Foremny, G., Singer, A. et al. Differential diagnosis of T2 hypointense masses in musculoskeletal MRI. Skeletal Radiol 50, 1981–1994 (2021). https://doi.org/10.1007/s00256-021-03711-0

Download citation

Keywords

  • Musculoskeletal
  • MRI
  • Hypointense
  • T2
  • Tumor
  • Lesion