Skip to main content

Advertisement

Log in

Pelvic bone tumor resection: post-operative imaging

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

The anatomic extent of a pelvic bone tumor and the need for reconstruction dictate the type of pelvic resection (limb salvage pelvic resection or amputation). If a pelvic bone tumor resection involves two or more critical anatomic structures (the sciatic nerve, femoral neurovascular bundle or the hip joint), then reasonable functional recovery after limb salvage is less likely and amputation should be considered. Both limb salvage and amputation approaches to the pelvis are technically arduous surgeries with significant associated morbidity and complications. As such, imaging plays an important role in the post-operative management of patients who have undergone pelvic bone tumor resection. In this article, we will review optimal imaging techniques as well as the expected post-operative appearance after pelvic bone tumor resection and important complications including infection, tumor recurrence, and complications related to complex soft tissue and osseous reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:7-277-300.

    Article  Google Scholar 

  2. Morris CD. Pelvic bone sarcomas: controversies and treatment options. J Natl Compr Cancer Netw. 2010;6:731–7.

    Article  Google Scholar 

  3. Mat Saad AZ, Halim AS, Faisham WI, Azman WS, Zulmi W. Soft tissue reconstruction following hemipelvectomy: eight-year experience and literature review. ScientificWorldJournal. 2012;2012:702904. https://doi.org/10.1100/2012/702904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khodarahmi I, Isaac A, Fishman EK, Dalili D, Fritz J. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging. Semin Musculoskelet Radiol. 2019;233:e68–81.

    Google Scholar 

  5. Ahlawat S, Stern SE, Belzberg AJ, Fritz J. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants. Skelet Radiol. 2017;467:897–908.

    Article  Google Scholar 

  6. Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol. 2011;1973:547–55.

    Article  Google Scholar 

  7. Molière S, Dillenseger JP, Ehlinger M, Kremer S, Bierry G. Comparative study of fat-suppression techniques for hip arthroplasty MR imaging. Skelet Radiol. 2017;469:1209–17.

    Article  Google Scholar 

  8. Jungmann PM, Bensler S, Zingg P, Fritz B, Pfirrmann CW, Sutter R. Improved visualization of juxtaprosthetic tissue using metal artifact reduction magnetic resonance imaging: experimental and clinical optimization of compressed sensing SEMAC. Investig Radiol. 2019;541:23–31.

    Article  Google Scholar 

  9. Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, , and metabolic MR techniques. Radiology. 2012;2652:340–56.

    Article  Google Scholar 

  10. Ogura K, Sakuraba M, Miyamoto S, Fujiwara T, Chuman H, Kawai A. Pelvic ring reconstruction with a double-barreled free vascularized fibula graft after resection of malignant pelvic bone tumor. Arch Orthop Trauma Surg. 2015;1355:619–25.

    Article  Google Scholar 

  11. Fritz J, Lurie B, Miller TT. Potter HG. MR imaging of hip arthroplasty implants. Radiographics. 2014;344:E106–32.

    Article  Google Scholar 

  12. James SL, Davies AM. Post-operative imaging of soft tissue sarcomas. Cancer Imaging. 2008;81:8–18.

    Article  Google Scholar 

  13. Bura V, Visrodia P, Bhosale P, et al. MRI of surgical flaps in pelvic reconstructive surgery: a pictorial review of normal and abnormal findings [published online ahead of print, 2019 Sep 16]. Abdom Radiol (NY). 2019. https://doi.org/10.1007/s00261-019-02211-z.

  14. Ogura K, Boland PJ, Fabbri N, Healey JH. Rate and risk factors for wound complications after internal hemipelvectomy. Bone Joint J. 2020;280-284:102–B3.

    Google Scholar 

  15. Benatto MT, Hussein AM, Gava NF, Maranho DA, Engel EE. Complications and cost analysis of hemipelvectomy for the treatment of pelvic tumors. Acta Ortop Bras. 2019;272:104–7.

    Article  Google Scholar 

  16. Angelini A, Drago G, Trovarelli G, Calabrò T, Ruggieri P. Infection after surgical resection for pelvic bone tumors: an analysis of 270 patients from one institution. Clin Orthop Relat Res. 2014;4721:349–59.

    Article  Google Scholar 

  17. Senchenkov A, Moran SL, Petty PM, et al. Predictors of complications and outcomes of external hemipelvectomy wounds: account of 160 consecutive cases. Ann Surg Oncol. 2008;151:355–63.

    Article  Google Scholar 

  18. Wilson RJ, Freeman TH Jr, Halpern JL, Schwartz HS, Holt GE. Surgical outcomes after limb-sparing resection and reconstruction for pelvic sarcoma: a systematic review. JBJS Rev. 2018;64:e10.

    Article  Google Scholar 

  19. Holbert JM, Lewis E. CT evaluation of the pelvis after hemipelvectomy. AJR Am J Roentgenol. 1985 Dec;1456:1233–9.

    Article  Google Scholar 

  20. Andreou D, Ranft A, Gosheger G, et al. Which factors are associated with local control and survival of patients with localized pelvic Ewing’s sarcoma? A retrospective analysis of data from the Euro-EWING99 trial. 2. Clin Orthop Relat Res. 2020;478:290–302.

    Article  Google Scholar 

  21. Takenaka S, Araki N, Ueda T, et al. Clinical outcomes of osteoarticular extracorporeal irradiated autograft for malignant bone tumor. Sarcoma. 2020;2020:9672093. https://doi.org/10.1155/2020/9672093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glasser G, Langlais D. The ISOLS Radiological Implant Evaluation System. [book auth.]. In: Langlais F, Tomeno B, editors. Limb salvage: major reconstructions in oncologic and nontumoral conditions. Berlin: Springer; 1991. p. xxiii.

    Google Scholar 

  23. Aponte-Tinao LA, Albergo JI, Ayerza MA, Muscolo DL, Ing FM, Farfalli GL. What are the complications of allograft reconstructions for sarcoma resection in children younger than 10 years at long-term followup? Clin Orthop Relat Res. 2018;4763:548–55. https://doi.org/10.1007/s11999.0000000000000055.

    Article  Google Scholar 

  24. Fayad LM, Patra A, Fishman EK. Value of 3D CT in defining skeletal complications of orthopedic hardware in the postoperative patient. AJR Am J Roentgenol. 2009;1934:1155–63.

    Article  Google Scholar 

  25. Zhou YJ, Yunus A, Tian Z, Chen JT, Wang C, Xu LL, et al. The pedicle screw-rod system is an acceptable method of reconstructive surgery after resection of sacroiliac joint tumours. Contemp Oncol (Pozn). 2016;20:73–9.

    Google Scholar 

  26. Mäkinen TJ, Abolghasemian M, Watts E, et al. Management of massive acetabular bone defects in revision arthroplasty of the hip using a reconstruction cage and porous metal augment. Bone Joint J. 2017;607-613:99–B5.

    Google Scholar 

  27. Müller PE, Dürr HR, Wegener B, Pellengahr C, Refior HJ, Jansson V. Internal hemipelvectomy and reconstruction with a megaprosthesis. Int Orthop. 2002;262:76–9.

    Google Scholar 

  28. Molnar R, Emery G, Choong PF. Anaesthesia for hemipelvectomy--a series of 49 cases. Anaesth Intensive Care. 2007;354:536–43. https://doi.org/10.1177/0310057X0703500412.

    Article  Google Scholar 

  29. Milne T, Solomon MJ, Lee P, et al. Sacral resection with pelvic exenteration for advanced primary and recurrent pelvic cancer: a single-institution experience of 100 sacrectomies. Dis Colon Rectum. 2014;57:1153–61.

    Article  Google Scholar 

  30. Mayerson JL, Wooldridge AN, Scharschmidt TJ. Pelvic resection: current concepts. J Am Acad Orthop Surg. 2014;22:214–22.

    Article  Google Scholar 

  31. Thambapillary S, Dimitriou R, Makridis KG, Fragkakis EM, Bobak P, Giannoudis PV. Implant longevity, complications and functional outcome following proximal femoral arthroplasty for musculoskeletal tumors: a systematic review. J Arthroplast. 2013;28:1381–5.

    Article  Google Scholar 

  32. Ruggieri P, Angelini A, Ussia G, Montalti M, Mercuri M. Surgical margins and local control in resection of sacral chordomas. Clin Orthop Relat Res. 2010;468:2939–47.

    Article  Google Scholar 

  33. Houdek MT, Witten BG, Hevesi M, et al. Advancing patient age is associated with worse outcomes in low- and intermediate-grade primary chondrosarcoma of the pelvis. J Surg Oncol. 2020;121:638–44.

    Article  Google Scholar 

  34. Andreou D, Ranft A, Gosheger G, Timmermann B, Ladenstein R, Hartmann W, et al. GPOH-Euro-EWING99 consortium. Which factors are associated with local control and survival of patients with localized pelvic Ewing’s sarcoma? A retrospective analysis of data from the Euro-EWING99 trial. Clin Orthop Relat Res. 2020;4782:290–302.

    Article  Google Scholar 

  35. Jeys L, Grimer R, Carter S, Tillman R, Abudu. Outcomes of primary bone tumors of the pelvis: the ROH experience. Orthop Proc. 2012;94-B:SUPP_XIV, 39-39.

  36. Hwang S, Panicek DM. Magnetic resonance imaging of bone marrow in oncology, Part 2. Skelet Radiol. 2007;36:1017–27.

    Article  Google Scholar 

  37. Wortman JR, Tirumani SH, Jagannathan JP, Rosenthal MH, Shinagare AB, Hornick JL, et al. Radiation therapy for soft-tissue sarcomas: a primer for radiologists. Radiographics. 2016;36(2):554–72.

    Article  Google Scholar 

  38. Cunningham J, Sharma R, Kirzner A, Hwang S, Lefkowitz R, Greenspan D, et al. Acute myonecrosis on MRI: etiologies in an oncological cohort and assessment of interobserver variability. Skelet Radiol. 2016;45:1069–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Ahlawat.

Ethics declarations

Conflict of interest

Shivani Ahlawat has received support from International Skeletal Society Seed Grant (2018-2020), Department of Defense (2018-2023), and Pfizer (2017-2018). Laura M. Fayad has received support from GERRAF 2008-10 and Siemens 2011-12.

Ethics statement

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlawat, S., McColl, M., Morris, C. et al. Pelvic bone tumor resection: post-operative imaging. Skeletal Radiol 50, 1303–1316 (2021). https://doi.org/10.1007/s00256-020-03703-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-020-03703-6

Keywords

Navigation