Skip to main content

Advertisement

Log in

Cryoanalgesia of the anterior femoral cutaneous nerve (AFCN) for the treatment of neuropathy-mediated anterior thigh pain: anatomy and technical description

  • Technical Report
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To describe and illustrate the magnetic resonance imaging (MRI) anatomy of the anterior femoral cutaneous nerve (AFCN) and a new technique for cryoanalgesia of the AFCN for long-term analgesic treatment of recalcitrant AFCN-mediated neuropathic pain.

Materials and methods

Using a procedural high-resolution MRI technique, we describe the MRI anatomy of the AFCN. Three patients (mean age, 48 years; range, 41–67 years) with selective nerve block-verified recalcitrant AFCN-mediated anterior thigh pain were enrolled to undergo cryoanalgesia of the AFCN. Procedures were performed under MRI guidance using clinical wide-bore MR imaging systems and commercially available cryoablation system with MR-conditional probes. Outcome variables included technical success, clinical effectiveness including symptom relief measured on an 11-point visual analog scale, frequency of complications, and procedure time.

Results

Procedural MRI allowed to successfully demonstrate the course of the AFCN, accurate cryoprobe placement, and monitoring of the ice ball, which resulted in technically successful iceball growth around the AFCN in all cases. All procedures were clinically effective, with median pain intensity decreasing from 8 (7–9) before the procedure to 1 (0–2) after the procedure. The cryoanalgesia effect persisted during a 12-month follow-up period in all three patients. No major complications occurred. The average total procedure time was 98 min (range, 85–125 min).

Conclusion

We describe the MRI anatomy of the AFCN and a new technique for cryoanalgesia of the AFCN using MRI guidance, which permits identification of the AFCN, selective targeting, and iceball monitoring to achieve long-term AFCN-mediated neuropathic pain relief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pivec C, Bodner G, Mayer JA, Brugger PC, Paraszti I, Moser V, et al. Novel demonstration of the anterior femoral cutaneous nerves using ultrasound. Ultraschall Med. 2018;39:318–27.

    Article  Google Scholar 

  2. Belsh JM. Anterior femoral cutaneous nerve injury following femoral artery reconstructive surgery. Arch Neurol. 1991;48:230–2.

    Article  CAS  Google Scholar 

  3. Chang K-V, Mezian K, Naňka O, Wu W-T, Lou Y-M, Wang J-C, et al. Ultrasound imaging for the cutaneous nerves of the extremities and relevant entrapment syndromes: from anatomy to clinical implications. J Clin Med. 2018;7:457.

    Article  Google Scholar 

  4. Oh SJ, Hatanaka Y, Ohira M, Kurokawa K, Claussen GC. Clinical utility of sensory nerve conduction of medial femoral cutaneous nerve. Muscle Nerve. 2012;45:195–9.

    Article  Google Scholar 

  5. Chhabra A, Faridian-Aragh N. High-resolution 3-T MR neurography of femoral neuropathy. Am J Roentgenol. 2012;198:3–10.

    Article  Google Scholar 

  6. Fritz J, Zolnoun D, Lee DA. Anatomic variability of the lateral femoral cutaneous nerve: value of 3T MRI in identifying anomaly for surgical intervention. Microsurgery. 2017;37:165–8.

    Article  Google Scholar 

  7. Rosén A, Tardast A, Shi T-J. How far have we come in the field of nerve regeneration after trigeminal nerve injury? Curr Oral Health Rep. 2016;3:309–13.

    Article  Google Scholar 

  8. Lee DA. Pain with sitting related to injury of the posterior femoral cutaneous nerve. Microsurgery. 2009;35(6):463–8.

    Google Scholar 

  9. Trescot AM. Cryoanalgesia in interventional pain management. Pain Physician. 2003;6:345–60.

    Article  Google Scholar 

  10. Fritz J, Dellon AL, Williams EH, Rosson GD, Belzberg AJ, Eckhauser FE. Diagnostic accuracy of selective 3-T MR neurography–guided retroperitoneal genitofemoral nerve blocks for the diagnosis of genitofemoral neuralgia. Acta Radiol SERAM. 2019;49:139–48.

  11. Cazzato RL, Garnon J, Ramamurthy N, Tsoumakidou G, Caudrelier J, Thenint MA, et al. Percutaneous MR-guided cryoablation of Morton’s neuroma: rationale and technical details after the first 20 patients. Cardiovasc Intervent Radiol. 2016;39:1491–8.

    Article  Google Scholar 

  12. Bonham LW, Phelps A, Rosson GD, Fritz J. MR imaging-guided cryoneurolysis of the sural nerve. J Vasc Interv Radiol SIR. 2018;29:1622–4.

    Article  Google Scholar 

  13. Joshi DH, Thawait GK, Del Grande F, Fritz J. MRI-guided cryoablation of the posterior femoral cutaneous nerve for the treatment of neuropathy-mediated sitting pain. Skeletal Radiol Skeletal Radiology. 2017;46:983–7.

    Article  Google Scholar 

  14. Riegler G, Pivec C, Jengojan S, et al. Cutaneous nerve fields of the anteromedial lower limb-Determination with selective ultrasound-guided nerve blockade. Clin Anat. 2020. https://doi.org/10.1002/ca.23582.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anloague PA, Huijbregts P. Anatomical variations of the lumbar plexus: a descriptive anatomy study with proposed clinical implications. J Man Manip Ther. 2009;17:107E–14E.

    Article  Google Scholar 

  16. Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR. Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. Am J Roentgenol. 1996;166:1337–45.

    Article  CAS  Google Scholar 

  17. Ilfeld BM, Gabriel RA, Trescot AM. Ultrasound-guided percutaneous cryoneurolysis for treatment of acute pain: could cryoanalgesia replace continuous peripheral nerve blocks? Br J Anaesth. 2017;119:709–12.

    Article  Google Scholar 

  18. Abram SE. Neural blockade for neuropathic pain. Clin J Pain. 2000;16(2 Suppl):S56–61.

    Article  CAS  Google Scholar 

  19. Soldatos T, Andreisek G, Thawait GK, Guggenberger R, Williams EH, Carrino JA, et al. High-resolution 3-T MR neurography of the lumbosacral plexus. Radiographics. 2013;33:967–87.

    Article  Google Scholar 

  20. O’Mara DM, Berges AJ, Fritz J, Weiss CR. MRI-guided percutaneous sclerotherapy of venous malformations: initial clinical experience using a 3T MRI system. Clin Imaging. Elsevier Inc. 2020;65:8–14.

    Article  Google Scholar 

  21. Moore W, Kolnick D, Tan J, Yu HS. CT guided percutaneous cryoneurolysis for post thoracotomy pain syndrome. Early experience and effectiveness. Acad Radiol. Elsevier Ltd. 2010;17:603–6.

    Article  Google Scholar 

  22. Zakrzewska JM, Nally FF. The role of cryotherapy (cryoanalgesia) in the management of paroxysmal trigeminal neuralgia: a six year experience. Br J Oral Maxillofac Surg. 1988;26(1):18–25.

    Article  CAS  Google Scholar 

  23. Bittman RW, Peters GL, Newsome JM, et al. Percutaneous image-guided cryoneurolysis. AJR Am J Roentgenol. 2018;210(2):454–65.

  24. Zhou L, Shao Z, Ou S. Cryoanalgesia: electrophysiology at different temperatures. Cryobiology. 2003;46:26–32.

    Article  Google Scholar 

  25. Savastano LE, Laurito SR, Fitt MR, Rasmussen JA, Gonzalez Polo V, Patterson SI. Sciatic nerve injury: a simple and subtle model for investigating many aspects of nervous system damage and recovery. J Neurosci Methods. Elsevier B.V. 2014;227:166–80.

    Article  Google Scholar 

  26. Ilfeld BM, Preciado J, Trescot AM. Novel cryoneurolysis device for the treatment of sensory and motor peripheral nerves. Expert Rev Med Devices. 2016;13(8):713–25.

    Article  CAS  Google Scholar 

  27. Yoon JHE, Grechushkin V, Chaudhry A, Bhattacharji P, Durkin B, Moore W. Cryoneurolysis in patients with refractory chronic peripheral neuropathic pain. J Vasc Interv Radiol. 2016;27:239–43.

    Article  Google Scholar 

  28. Dasa V, Lensing G, Parsons M, Harris J, Volaufova J, Bliss R. Percutaneous freezing of sensory nerves prior to total knee arthroplasty. Knee. 2016;23:523–8.

    Article  Google Scholar 

  29. Hodor L, Barkal K, Hatch-Fox LD. Cryogenic denervation of the intermetatarsal space neuroma. J Foot Ankle Surg. 1997;36:311–4.

    Article  CAS  Google Scholar 

  30. Peters GL, Newsome JM, Friedberg EB, Mitchell JW, Knight JM, Prologo JD. Percutaneous image-guided cryoneurolysis. AJR Am J Roentgenol. 2018;210(2):454–65.

    Article  Google Scholar 

  31. Prologo JD, Gilliland CA, Miller M, Harkey P, Knight J, Kies D, et al. Percutaneous image-guided cryoablation for the treatment of phantom limb pain in amputees: a pilot study. J Vasc Interv Radiol. 2017;28:24–34.e4.

    Article  Google Scholar 

  32. Bittman RW, Behbahani K, Gonzalez F, Prologo JD. Interventional cryoneurolysis: what is the same, what is different, what is new? Semin Interv Radiol. 2019;36:374–80.

    Article  Google Scholar 

  33. Fritz J, Chhabra A, Wang KC, Carrino JA. Magnetic resonance neurography-guided nerve blocks for the diagnosis and treatment of chronic pelvic pain syndrome. Neuroimaging Clin N Am Elsevier Inc. 2014;24:211–34.

    Article  Google Scholar 

  34. Fritz J, Dellon AL, Williams EH, Belzberg AJ, Carrino JA. 3-Tesla high-field magnetic resonance neurography for guiding nerve blocks and its role in pain management. Magn Reson Imaging Clin N Am. 2015;23(4):533–45.

    Article  Google Scholar 

  35. Kurup AN, Schmit GD, Morris JM, Atwell TD, Schmitz JJ, Weisbrod AJ, et al. Avoiding complications in bone and soft tissue ablation. Cardiovasc Intervent RadiolSpringer New York LLC. 2017;40:166–76.

    Article  Google Scholar 

  36. Maybody M, Tang PQ, Hsu M, Yarmohammadi H, Boas E. Pneumodissection for skin protection in image-guided cryoablation of superficial musculoskeletal. Physiol Behav. 2017;176:139–48.

    Article  Google Scholar 

  37. Pham M, Bäumer T, Bendszus M. Peripheral nerves and plexus: imaging by MR-neurography and high-resolution ultrasound. Curr Opin Neurol England. 2014;27:370–9.

    Article  Google Scholar 

  38. Khatri G, Khan A, Raval G, Chhabra A. Diagnostic evaluation of chronic pelvic pain. Phys Med Rehabil Clin N Am. Elsevier Inc. 2017;28:477–500.

    Article  Google Scholar 

  39. Koethe Y, Mannes AJ, Wood BJ. Image-guided nerve cryoablation for post-thoracotomy pain syndrome. Cardiovasc Intervent Radiol. 2014;37:843–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Fritz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical treatment of human subjects

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalili, D., Ahlawat, S., Rashidi, A. et al. Cryoanalgesia of the anterior femoral cutaneous nerve (AFCN) for the treatment of neuropathy-mediated anterior thigh pain: anatomy and technical description. Skeletal Radiol 50, 1227–1236 (2021). https://doi.org/10.1007/s00256-020-03650-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-020-03650-2

Keywords

Navigation