Skip to main content

Advertisement

Log in

Association of blood pressure with knee cartilage composition and structural knee abnormalities: data from the osteoarthritis initiative

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate the associations of systolic blood pressure (SBP) and diastolic blood pressure (DBP) with changes in knee cartilage composition and joint structure over 48 months, using magnetic resonance imaging (MRI) data from the Osteoarthritis Initiative (OAI).

Materials and methods

A total of 1126 participants with right knee Kellgren-Lawrence (KL) score 0–2 at baseline, no history of rheumatoid arthritis, blood pressure measurements at baseline, and cartilage T2 measurements at baseline and 48 months were selected from the OAI. Cartilage composition was assessed using MRI T2 measurements, including laminar and gray-level co-occurrence matrix texture analyses. Structural knee abnormalities were graded using the whole-organ magnetic resonance imaging score (WORMS). We performed linear regression, adjusting for age, sex, body mass index, physical activity, smoking status, alcohol use, KL score, number of anti-hypertensive medications, and number of nonsteroidal anti-inflammatory drugs.

Results

Higher baseline DBP was associated with greater increases in global T2 (coefficient 0.22 (95% CI 0.09, 0.34), P = 0.004), global superficial layer T2 (coefficient 0.39 (95% CI 0.20, 0.58), P = 0.001), global contrast (coefficient 15.67 (95% CI 8.81, 22.53), P < 0.001), global entropy (coefficient 0.02 (95% CI 0.01, 0.03) P = 0.011), and global variance (coefficient 9.14 (95% CI 5.18, 13.09), P < 0.001). Compared with DBP, the associations of SBP with change in cartilage T2 parameters and WORMS subscores showed estimates of smaller magnitude.

Conclusion

Higher baseline DBP was associated with higher and more heterogenous cartilage T2 values over 48 months, indicating increased cartilage matrix degenerative changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr Res Soc. 2013;21:1145–53. https://doi.org/10.1016/j.joca.2013.03.018.

    Article  CAS  Google Scholar 

  2. McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, Bierma-Zeinstra SM, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil. 2014;22:363–88. https://doi.org/10.1016/J.JOCA.2014.01.003.

    Article  CAS  PubMed  Google Scholar 

  3. Yoshimura N, Muraki S, Oka H, Tanaka S, Kawaguchi H, Nakamura K, et al. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. Osteoarthr Cartil. 2012;20:1217–26. https://doi.org/10.1016/j.joca.2012.06.006.

    Article  CAS  PubMed  Google Scholar 

  4. Monira Hussain S, Wang Y, Cicuttini FM, Simpson JA, Giles GG, Graves S, et al. Incidence of total knee and hip replacement for osteoarthritis in relation to the metabolic syndrome and its components: a prospective cohort study. Semin Arthritis Rheum. 2014;43:429–36. https://doi.org/10.1016/j.semarthrit.2013.07.013.

    Article  PubMed  Google Scholar 

  5. Lo GH, McAlindon TE, Katz JN, Driban JB, Price LL, Eaton CB, et al. Systolic and pulse pressure associate with incident knee osteoarthritis: data from the osteoarthritis initiative. Clin Rheumatol. 2017;36:2121–8. https://doi.org/10.1007/s10067-017-3656-z.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Niu J, Clancy M, Aliabadi P, Vasan R, Felson DT. Metabolic syndrome, its components, and knee osteoarthritis: the Framingham osteoarthritis study. Arthritis Rheum. 2017;69:1194–203. https://doi.org/10.1002/art.40087.

    Article  Google Scholar 

  7. Zhang YM, Wang J, Liu XG. Association between hypertension and risk of knee osteoarthritis. Med (United States). 2017;96:e7584. https://doi.org/10.1097/MD.0000000000007584.

    Article  Google Scholar 

  8. Jungmann PM, Kraus MS, Alizai H, Nardo L, Baum T, Nevitt MC, et al. Association of metabolic risk factors with cartilage degradation assessed by T2 relaxation time at the knee: data from the osteoarthritis initiative. Arthritis Care Res. 2013;65:1942–50. https://doi.org/10.1002/acr.22093.

    Article  CAS  Google Scholar 

  9. Link TM, Neumann J, Li X. Prestructural cartilage assessment using MRI. J Magn Reson Imaging. 2017;45:949–65. https://doi.org/10.1002/jmri.25554.

    Article  PubMed  Google Scholar 

  10. Liebl H, Joseph G, Nevitt MC, Singh N, Heilmeier U, Subburaj K, et al. Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis. 2015;74:1353–9. https://doi.org/10.1136/annrheumdis-2013-204157.

    Article  PubMed  Google Scholar 

  11. Li X, Pai A, Blumenkrantz G, Carballido-Gamio J, Link T, Ma B, et al. Spatial distribution and relationship of T and T2 relaxation times in knee cartilage with osteoarthritis. Magn Reson Med. 2009;61:1310–8. https://doi.org/10.1002/mrm.21877.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carballido-Gamio J, Blumenkrantz G, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T2 knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative. Magn Reson Med. 2010;63:465–72. https://doi.org/10.1002/mrm.22201.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blumenkrantz G, Stahl R, Carballido-Gamio J, Zhao S, Lu Y, Munoz T, et al. The feasibility of characterizing the spatial distribution of cartilage T2 using texture analysis. Osteoarthr Cartil. 2008;16:584–90. https://doi.org/10.1016/j.joca.2007.10.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jungmann PM, Kraus MS, Nardo L, Liebl H, Alizai H, Joseph GB, et al. T2 relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur: longitudinal data from the osteoarthritis initiative. J Magn Reson Imaging. 2013;38:1415–24. https://doi.org/10.1002/jmri.24137.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chanchek N, Gersing AS, Schwaiger BJ, Nevitt MC, Neumann J, Joseph GB, et al. Association of diabetes mellitus and biochemical knee cartilage composition assessed by T2 relaxation time measurements: data from the osteoarthritis initiative. J Magn Reson Imaging. 2018;47:380–90. https://doi.org/10.1002/jmri.25766.

    Article  PubMed  Google Scholar 

  16. Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthr Cartil. 2010;18:776–86. https://doi.org/10.1016/j.joca.2010.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Joseph GB, Baum T, Carballido-gamio J, Nardo L, Virayavanich W, Alizai H, et al. Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls - data from the osteoarthritis initiative. Arthritis Res Ther. 2011;13:R153. https://doi.org/10.1186/ar3469.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Serebrakian AT, Poulos T, Liebl H, Joseph GB, Lai A, Nevitt MC, et al. Weight loss over 48 months is associated with reduced progression of cartilage T2 relaxation time values: data from the osteoarthritis initiative. J Magn Reson Imaging. 2015;41:1272–80. https://doi.org/10.1002/jmri.24630.

    Article  PubMed  Google Scholar 

  19. Stehling C, Baum T, Mueller-Hoecker C, Liebl H, Carballido-Gamio J, Joseph GB, et al. A novel fast knee cartilage segmentation technique for T2 measurements at MR imaging - data from the osteoarthritis initiative. Osteoarthr Cartil. 2011;19:984–9. https://doi.org/10.1016/j.joca.2011.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baum T, Joseph GB, Arulanandan A, Nardo L, Virayavanich W, Carballido-Gamio J, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the osteoarthritis initiative. Arthritis Care Res. 2012;64:248–55. https://doi.org/10.1002/acr.20672.

    Article  Google Scholar 

  21. Joseph GB, Baum T, Alizai H, Carballido-Gamio J, Nardo L, Virayavanich W, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years - data from the osteoarthritis initiative. Osteoarthr Cartil. 2012;20:727–35. https://doi.org/10.1016/j.joca.2012.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neumann J, Guimaraes JB, Heilmeier U, Joseph GB, Nevitt MC, McCulloch CE, et al. Diabetics show accelerated progression of knee cartilage and meniscal lesions: data from the osteoarthritis initiative. Skelet Radiol. 2018:1–12. https://doi.org/10.1007/s00256-018-3088-0.

  23. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42:1206–52. https://doi.org/10.1161/01.hyp.0000107251.49515.c2.

    Article  CAS  PubMed  Google Scholar 

  24. Aw TJ, Haas SJ, Liew D, Krum H. Meta-analysis of cyclooxygenase-2 inhibitors and their effects on blood pressure. Arch Intern Med. 2005;165:490–6. https://doi.org/10.1001/archinte.165.5.IOI50013.

    Article  CAS  PubMed  Google Scholar 

  25. Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil. 2008;16:1433–41. https://doi.org/10.1016/j.joca.2008.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502. https://doi.org/10.1136/ARD.16.4.494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller AJ, Joseph PM. The use of power images to perform quantitative analysis on low SNR MR images. Magn Reson Imaging. 1993;11:1051–6. https://doi.org/10.1016/0730-725X(93)90225-3.

    Article  CAS  PubMed  Google Scholar 

  28. Raya JG, Dietrich O, Horng A, Weber J, Reiser MF, Glaser C. T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR. Magn Reson Med. 2010;63:181–93. https://doi.org/10.1002/mrm.22178.

    Article  PubMed  Google Scholar 

  29. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging. 2003;17:358–64. https://doi.org/10.1002/jmri.10263.

    Article  PubMed  Google Scholar 

  30. Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14:50–5. https://doi.org/10.1002/jmri.1150.

    Article  PubMed  Google Scholar 

  31. Haralick RM, Dinstein I, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3:610–21. https://doi.org/10.1109/TSMC.1973.4309314.

    Article  Google Scholar 

  32. Carballido-Gamio J, Joseph GB, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T2 knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative: a texture approach. Magn Reson Med. 2011;65:1184–94. https://doi.org/10.1002/mrm.22693.

    Article  PubMed  Google Scholar 

  33. Peterfy CG, Guermazi A, Zaim S, Tirman PFJ, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12:177–90. https://doi.org/10.1016/j.joca.2003.11.003.

    Article  CAS  PubMed  Google Scholar 

  34. Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med. 2009;121:9–20. https://doi.org/10.3810/pgm.2009.11.2073.

    Article  PubMed  Google Scholar 

  35. Findlay DM. Vascular pathology and osteoarthritis (review). Rheumatology. 2007;46:1763–8. https://doi.org/10.1093/rheumatology/kem191.

    Article  CAS  PubMed  Google Scholar 

  36. Zhuo Q, Yang W, Chen J, Wang Y. Metabolic syndrome meets osteoarthritis (review). Nat Rev Rheumatol. 2012;8:729–37. https://doi.org/10.1038/nrrheum.2012.135.

    Article  CAS  PubMed  Google Scholar 

  37. Feihl F, Liaudet L, Levy BI, Waeber B. Hypertension and microvascular remodelling (review). Cardiovasc Res. 2008;78:274–85. https://doi.org/10.1093/cvr/cvn022.

    Article  CAS  PubMed  Google Scholar 

  38. Kakar P, Lip GYH. Hypertension: endothelial dysfunction, the prothrombotic state and antithrombotic therapy (review). Expert Rev Cardiovasc Ther. 2007;5:441–50. https://doi.org/10.1586/14779072.5.3.441.

    Article  CAS  PubMed  Google Scholar 

  39. Chan P, Yang W, Wen C, Yan C, Chiu K. Spontaneously hypertensive rat as a novel model of comorbid knee osteoarthritis (abstract). Osteoarthr Cartil. 2017;25:S319–20. https://doi.org/10.1016/J.JOCA.2017.02.536.

    Article  Google Scholar 

  40. Schiffrin EL, Deng LY. Relationship between small-artery structure and systolic, diastolic and pulse pressure in essential hypertension. J Hypertens. 1999;17:381–7. https://doi.org/10.1097/00004872-199917030-00011.

    Article  CAS  PubMed  Google Scholar 

  41. David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging. 2004;22:673–82. https://doi.org/10.1016/J.MRI.2004.01.071.

    Article  PubMed  Google Scholar 

  42. Carballido-Gamio J, Stahl R, Blumenkrantz G, Romero A, Majumdar S, Link TM. Spatial analysis of magnetic resonance T1ρ and T2 relaxation times improves classification between subjects with and without osteoarthritis. Med Phys. 2009;36:4059–67. https://doi.org/10.1118/1.3187228.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gersing AS, Solka M, Joseph GB, Schwaiger BJ, Heilmeier U, Feuerriegel G, et al. Progression of cartilage degeneration and clinical symptoms in obese and overweight individuals is dependent on the amount of weight loss: 48-month data from the osteoarthritis initiative. Osteoarthr Cartil. 2016;24:1126–34. https://doi.org/10.1016/j.joca.2016.01.984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bliddal H, Leeds AR, Christensen R. Osteoarthritis, obesity and weight loss: evidence, hypotheses and horizons - a scoping review (review). Obes Rev. 2014;15:578–86. https://doi.org/10.1111/obr.12173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beevers G. ABC of hypertension: the pathophysiology of hypertension (review). BMJ. 2001;322:912–6. https://doi.org/10.1136/bmj.322.7291.912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cuspidi C, Ochoa JE, Parati G. Seasonal variations in blood pressure: a complex phenomenon (editorial). J Hypertens. 2012;30:1315–20. https://doi.org/10.1097/HJH.0b013e328355d7f9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the participants and staff of the Coordinating Center of the OAI for their invaluable assistance with patient selection, statistical analysis, and technical support.

Funding

This project was supported by the Osteoarthritis Initiative (OAI), a public-private partnership comprised of five contracts (National Institute of Arthritis and Musculoskeletal and Skin Diseases contracts N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262) funded by the National Institutes of Health (NIH), with research conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This study was also supported by NIH/NIAMS grants (R01AR064771, P50-AR060752) and the National Center for Advancing Translational Sciences, NIH, through UCSF-CTSI Grant Number TL1 TR001871.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Ashmeik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Informed consent was obtained from all individual participants included in the study. The OAI study was compliant with the Health Insurance Portability and Accountability Act and was approved by the local institutional review board of each OAI participating center. All procedures performed in this study were in accordance with the ethical standards of the local institutional review board and with the 1964 Helsinki declaration and its later amendments.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 34.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashmeik, W., Joseph, G.B., Nevitt, M.C. et al. Association of blood pressure with knee cartilage composition and structural knee abnormalities: data from the osteoarthritis initiative. Skeletal Radiol 49, 1359–1368 (2020). https://doi.org/10.1007/s00256-020-03409-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-020-03409-9

Keywords

Navigation