Optimizing radiation dose parameters in MDCT arthrography of the shoulder: illustration of basic concepts in a cadaveric study



To determine in a cadaveric study the lowest achievable radiation dose and optimal tube potential generating diagnostic image quality in multidetector computed tomography (MDCT) arthrography of the shoulder.

Materials and methods

Six shoulders from three human cadavers were scanned using a 256-MDCT system after intra-articular injection of diluted iodinated contrast material. Using six decreasing radiation dose levels (CTDIvol: 20, 15, 10, 8, 6, and 4 mGy) and for each dose level, four decreasing tube potentials (140, 120, 100, and 80 kVp), image noise and contrast-to-noise ratio (CNR) were measured. Two independent and blinded observers assessed the overall diagnostic image quality, subjective amount of noise, and severity of artifacts according to a four-point scale. Influence of those MDCT data acquisition parameters on objective and subjective image quality was analyzed using the Kruskal–Wallis and Wilcoxon signed-rank tests, and pairwise comparisons were performed.


Multidetector CT protocols with radiation doses of 15 mGy or higher, combined with tube potentials of 100 kVp or higher, were equivalent in CNR to the reference 20 mGy–140 kVp protocol (all p ≥ 0.054). Above a CTDIvol of 10 mGy and a tube potential of 120 kVp, all protocols generated diagnostic image quality and subjective noise equivalent to the 20 mGy–140 kVp protocol (all p ≥ 0.22).


Diagnostic image quality in MDCT arthrography of the shoulder can be obtained with a radiation dose of 10 mGy at an optimal tube potential of 120 kVp, corresponding to a reduction of up to 50% compared with standard-dose protocols, and as high as 500% compared with reported protocols in the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.


  1. 1.

    Fritz J, Fishman EK, Small KM, Winalski CS, Horger MS, Corl F, et al. MDCT arthrography of the shoulder with datasets of isotropic resolution: indications, technique, and applications. Am J Roentgenol. 2012;198(3):635–46.

    Article  Google Scholar 

  2. 2.

    Omoumi P, Bafort A-C, Dubuc J-E, Malghem J, Vande Berg BC, Lecouvet FE. Evaluation of rotator cuff tendon tears: comparison of multidetector CT arthrography and 1.5-T MR arthrography. Radiology. 2012;264(3):812–22.

    Article  Google Scholar 

  3. 3.

    Acid S, Le Corroller T, Aswad R, Pauly V, Champsaur P. Preoperative imaging of anterior shoulder instability: diagnostic effectiveness of MDCT arthrography and comparison with MR arthrography and arthroscopy. Am J Roentgenol. 2012;198(3):661–7.

    Article  Google Scholar 

  4. 4.

    Lecouvet FE, Simoni P, Koutaïssoff S, Vande Berg BC, Malghem J, Dubuc J-EE. Multidetector spiral CT arthrography of the shoulder. Clinical applications and limits, with MR arthrography and arthroscopic correlations. Eur J Radiol. 2008;68(1):120–36.

    Article  Google Scholar 

  5. 5.

    Omoumi P, Rubini A, Dubuc JE, Vande Berg BC, Lecouvet FE. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol. 2015;25(4):961–9.

    Article  Google Scholar 

  6. 6.

    Omoumi P, Mercier GA, Lecouvet F, Simoni P, Vande Berg BC. CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin N Am. 2009;47(4):595–615.

    Article  Google Scholar 

  7. 7.

    Jungmann PM, Agten CA, Pfirrmann CW, Sutter R. Advances in MRI around metal. J Magn Reson Imaging. 2017;46(4):972–91.

    Article  Google Scholar 

  8. 8.

    Mallo GC, Burton L, Coats-Thomas M, Daniels SD, Sinz NJ, Warner JJP. Assessment of painful total shoulder arthroplasty using computed tomography arthrography. J Shoulder Elbow Surg. 2015;24(10):1507–11. https://doi.org/10.1016/j.jse.2015.06.027.

    Article  PubMed  Google Scholar 

  9. 9.

    Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91(8):1882–9.

    Article  Google Scholar 

  10. 10.

    Gervaise A, Teixeira P, Villani N, Lecocq S, Louis M, Blum A. CT dose optimisation and reduction in osteoarticular disease. Diagn Interv Imaging. 2013;94(4):371–88.

    CAS  Article  Google Scholar 

  11. 11.

    Guggenberger R, Ulbrich EJ, Dietrich TJ, Scholz R, Kaelin P, Köhler C, et al. C-arm flat-panel CT arthrography of the shoulder: radiation dose considerations and preliminary data on diagnostic performance. Eur Radiol. 2017;27(2):454–63.

    Article  Google Scholar 

  12. 12.

    Sinnott B, Ron E, Schneider AB. Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocr Rev. 2010;31(5):756–73.

    Article  Google Scholar 

  13. 13.

    Mazonakis M, Tzedakis A, Damilakis J, Gourtsoyiannis N. Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction? Eur Radiol. 2007;17(5):1352–7.

    Article  Google Scholar 

  14. 14.

    Waldt S, Metz S, Burkart A, Mueller D, Bruegel M, Rummeny EJ, et al. Variants of the superior labrum and labro-bicipital complex: a comparative study of shoulder specimens using MR arthrography, multi-slice CT arthrography and anatomical dissection. Eur Radiol. 2006;16(2):451–8.

    Article  Google Scholar 

  15. 15.

    De Maeseneer M, Boulet C, Pouliart N, Kichouh M, Buls N, Verhelle F, et al. Assessment of the long head of the biceps tendon of the shoulder with 3T magnetic resonance arthrography and CT arthrography. Eur J Radiol. 2012;81(5):934–9. https://doi.org/10.1016/j.ejrad.2011.01.121.

    Article  PubMed  Google Scholar 

  16. 16.

    Bongartz G, Golding SJ, Jurik AG, Leonardi M, van Persijn van Meerten E, Geleijns J, et al. European guidelines on quality criteria for computed tomography. March 2004. Available from: http://www.drs.dk/guidelines/ct/quality/mainindex.htm.

  17. 17.

    FOPH Swiss Federal Office of Public Health. Notice R-06-06. Ref R-06-06df. Established 01.04.2010.

  18. 18.

    Omoumi P, Becce F, Ott JG, Racine D, Verdun FR. Optimization of radiation dose and image quality in musculoskeletal CT: emphasis on iterative reconstruction techniques I. Semin Musculoskelet Radiol. 2015;19(5):415–21.

    Article  Google Scholar 

  19. 19.

    Omoumi P, Verdun FR, Becce F. Optimization of radiation dose and image quality in musculoskeletal CT: emphasis on iterative reconstruction techniques II. Semin Musculoskelet Radiol. 2015;19(5):422–30.

    Article  Google Scholar 

  20. 20.

    Omoumi P, Becce F, Racine D, Ott JG, Andreisek G, Verdun FR. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging I. Semin Musculoskelet Radiol. 2015;19(5):431–7.

    Article  Google Scholar 

  21. 21.

    Radiological Society of North America. RadLex: a lexicon for uniform indexing and retrieval of radiology information resources [Internet]. March 2018. Available from: http://radlex.org/.

  22. 22.

    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    CAS  Google Scholar 

  23. 23.

    Racine D, Viry A, Becce F, Schmidt S, Ba A, Bochud FO, et al. Objective comparison of high-contrast spatial resolution and low-contrast detectability for various clinical protocols on multiple CT scanners. Med Phys. 2017;44(9):e153–63.

    Article  Google Scholar 

  24. 24.

    Simoni P, Leyder PP, Albert A, Malchair F, Maréchal C, Scarciolla L, et al. Optimization of computed tomography (CT) arthrography of hip for the visualization of cartilage: an in vitro study. Skeletal Radiol. 2014;43(2):169–78.

    Article  Google Scholar 

  25. 25.

    Roth TD, Buckwalter KA, Choplin RH. Musculoskeletal computed tomography: current technology and clinical applications. Semin Roentgenol. 2013;48(2):126–39. https://doi.org/10.1053/j.ro.2012.11.009.

    Article  PubMed  Google Scholar 

  26. 26.

    Gurung J, Khan MF, Maataoui A, Herzog C, Bux R, Bratzke H, et al. Multislice CT of the pelvis: dose reduction with regard to image quality using 16-row CT. Eur Radiol. 2005;15(9):1898–905.

    Article  Google Scholar 

  27. 27.

    Subhas N, Freire M, Primak AN, Polster JM, Recht MP, Davros WJ, et al. CT arthrography: in vitro evaluation of single and dual energy for optimization of technique. Skeletal Radiol. 2010;39(10):1025–31.

    Article  Google Scholar 

  28. 28.

    Ahn SJ, Hong SH, Chai JW, Choi J-YY, Yoo HJ, Kim SH, et al. Comparison of image quality of shoulder CT arthrography conducted using 120 kVp and 140 kVp protocols. Korean J Radiol. 2014;15(6):739–45.

    Article  Google Scholar 

  29. 29.

    Kaza RK, Platt JF, Goodsitt MM, Al-Hawary MM, Maturen KE, Wasnik AP, et al. Emerging techniques for dose optimization in abdominal CT. Radiographics. 2014;34(1):4–17.

    Article  Google Scholar 

  30. 30.

    Von Falck C, Galanski M, Shin H. Informatics in radiology: sliding-thin-slab averaging for improved depiction of low-contrast lesions with radiation dose savings at thin-section CT. Radiographics. 2010;30:317–26. https://doi.org/10.1148/rg.302096007.

    Article  Google Scholar 

  31. 31.

    Becce F, Ben Salah Y, Verdun FR, Vande Berg BC, Lecouvet FE, Meuli R, et al. Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction. Skeletal Radiol. 2013;42(7):937–45.

    Article  Google Scholar 

  32. 32.

    Omoumi P, Verdun FR, Ben Salah Y, Vande Berg BC, Lecouvet FE, Malghem J, et al. Low-dose multidetector computed tomography of the cervical spine: optimization of iterative reconstruction strength levels. Acta Radiol. 2014;55(3):335–44.

    Article  Google Scholar 

  33. 33.

    Geyer LL, Körner M, Hempel R, Deak Z, Mueck FG, Linsenmaier U, et al. Evaluation of a dedicated MDCT protocol using iterative image reconstruction after cervical spine trauma. Clin Radiol. 2013;68(7):391–6.

    Article  Google Scholar 

  34. 34.

    Tobalem F, Dugert E, Verdun FR, Dunet V, Ott JG, Rudiger HA, et al. MDCT arthrography of the hip: value of the adaptive statistical iterative reconstruction technique and potential for radiation dose reduction. AJR Am J Roentgenol. 2014;203(6):W665–73.

    Article  Google Scholar 

Download references


We would like to thank the Anatomy Lab of the Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, for providing us with the cadavers.

Author information



Corresponding author

Correspondence to Patrick Omoumi.

Ethics declarations

Conflicts of interest


Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguet, J., Becce, F., Dunet, V. et al. Optimizing radiation dose parameters in MDCT arthrography of the shoulder: illustration of basic concepts in a cadaveric study. Skeletal Radiol 48, 1261–1268 (2019). https://doi.org/10.1007/s00256-019-3150-6

Download citation


  • MDCT
  • CT
  • Shoulder
  • Arthrography
  • Radiation dose
  • Image quality