Skip to main content

Advertisement

Log in

Characterization of soft tissue tumours with ultrasound, shear wave elastography and MRI

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To predict accurately whether a soft tissue mass was benign or malignant and to characterize its type using ultrasound, shear wave elastography and MRI. We hypothesized that with the addition of shear wave elastography, it would be possible to determine a threshold velocity value to classify a lesion as benign or malignant.

Materials and methods

A total of 151 consecutive, consenting adult patients were prospectively recruited to this study in a tertiary referral musculoskeletal oncology centre. All lesions were assessed with ultrasound, including B mode, Doppler and shear wave elastography measurements. One hundred thirty-eight patients also underwent MRI of the lesion. A histological diagnosis was obtained for all lesions.

Results

Malignant lesions were larger than benign lesions and had a greater Doppler activity.

There was no useful threshold shear wave velocity to differentiate between benign and malignant lesions. Longitudinal and transverse shear wave velocities were strongly positively correlated with each other. An inverse correlation was shown with lesion size and depth, regardless of whether it was benign or malignant.

A logistic regression model combining the ultrasound and MRI characteristics did not confidently classify a lesion as benign or malignant and was inferior to expert opinion.

Conclusion

The strongest predictors of malignancy are large lesion size and high vascularity. The combination of all ultrasound characteristics (including shear wave elastography) and MRI features does not confidently classify a lesion as benign or malignant, and histological diagnosis remains the gold standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lakkaraju A, Sinha R, Garikipati R, Edward S, Robinson P. Ultrasound for initial evaluation and triage of clinically suspicious soft-tissue masses. Clin Radiol. 2009;64(6):615–21. https://doi.org/10.1016/j.crad.2009.01.012.

    Article  PubMed  CAS  Google Scholar 

  2. Kransdorf MJ, Murphey MD. Radiologic evaluation of soft-tissue masses: a current perspective. AJR Am J Roentgenol. 2000;175(3):575–87 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10954433.

    Article  PubMed  CAS  Google Scholar 

  3. Winn N, Lalam R, Cassar-Pullicino V. Sonoelastography in the musculoskeletal system: current role and future directions. World J Radiol. 2016;8(11):868–79.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Drakonaki E. Ultrasound elastography for imaging tendons and muscles. J Ultrason. 2012;12(49):214–25.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Drakonaki E, Allen GM, Wilson D. Ultrasound elastography for musculoskeletal applications. Br J Radiol. 2012;85(November):1435–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Monti L, Tomà P, Pompili M, Gasbarrini A. Liver stiffness in pediatric patients with fatty liver disease : diagnostic accuracy and reproducibility of shear-wave. Radiology. 2017;000(0):1–8.

    Google Scholar 

  7. Frulio N, Trillaud H. Ultrasound elastography in liver. Diagn Interv Imaging. 2013 [cited 2013 Sep 22];94(5):515–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23623211.

  8. Friedrich-Rust M, Buggisch P, de Knegt RJ, Dries V, Shi Y, Matschenz K, et al. Acoustic radiation force impulse imaging for non-invasive assessment of liver fibrosis in chronic hepatitis B. J Viral Hepat [Internet]. 2013 [cited 2013 Sep 22];20(4):240–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23490368.

  9. Hanquinet S, Courvoisier D, Kanavaki A, Dhouib A, Anooshiravani M. Acoustic radiation force impulse imaging-normal values of liver stiffness in healthy children. Pediatr Radiol [Internet]. 2013 [cited 2013 Sep 22];43(5):539–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23247632.

    Google Scholar 

  10. Zhang P, Zhou P, Tian S-M, Qian Y, Deng J, Zhang L. Application of acoustic radiation force impulse imaging for the evaluation of focal liver lesion elasticity. Hepatobiliary Pancreat Dis Int [Internet]. 2013 Apr [cited 2013 Sep 22];12(2):165–70. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1499387213600272

  11. Madhok R, Tapasvi C, Prasad U, Gupta AK, Aggarwal A. Acoustic radiation force impulse imaging of the liver: measurement of the normal mean values of the shearing wave velocity in a healthy liver. J Clin Diagn Res [Internet]. 2013 Jan [cited 2013 Sep 22];7(1):39–42. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3576746&tool=pmcentrez&rendertype=abstract

  12. Şirli R, Sporea I, Bota S, Raţiu I. Liver elastography for the diagnosis of portal hypertension in patients with liver cirrhosis. Med Ultrason. 2012;14(3):225–30 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22957328.

    PubMed  Google Scholar 

  13. Evans A, Purdie CA, Jordan L, Macaskill EJ, Flynn J, Vinnicombe S. Stiffness at shear-wave elastography and patient presentation predicts upgrade at surgery following an ultrasound-guided core biopsy diagnosis of ductal carcinoma in situ. Clin Radiol [Internet]. 2016;71(11):1156–9. https://doi.org/10.1016/j.crad.2016.07.004.

    Article  CAS  Google Scholar 

  14. Barr RG. Shear-wave elastography of the breast : value of a quality measure and comparison with strain. Radiology. 2015;275(1):45–53.

    Article  PubMed  Google Scholar 

  15. Bojunga J, Dauth N, Berner C, Meyer G, Holzer K, Voelkl L, et al. Acoustic radiation force impulse imaging for differentiation of thyroid nodules. PLoS One [Internet]. 2012 Jan [cited 2013 Sep 22];7(8):e42735. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3430659&tool=pmcentrez&rendertype=abstract

  16. Barr RG, Cosgrove D, Brock M, Cantisani V, Correas JM, Postema AW, et al. WFUMB guidelines and recommendations on the clinical use of ultrasound elastography: part 5. Prostate Ultrasound Med Biol. 2017;43(1):27–48.

    Article  PubMed  Google Scholar 

  17. Şendur HN, Cindil E, Cerit M, Demir NB, Şendur AB, Oktar SÖ. Interobserver variability and stiffness measurements of normal common extensor tendon in healthy volunteers using shear wave elastography. Skelet Radiol. 2018:3–7.

  18. Payne C, Watt P, Cercignani M, Webborn N. Reproducibility of shear wave elastography measures of the Achilles tendon. Skelet Radiol. 2018:779–84.

  19. Domenichini R, Pialat J, Podda A, Aubry S. Ultrasound elastography in tendon pathology: state of the art. Skelet Radiol. 2017:1643–55.

  20. Payne C, Webborn N, Watt P, Cercignani M. Poor reproducibility of compression elastography in the Achilles tendon : same day and consecutive day measurements. Skelet Radiol. 2017:889–95.

  21. Wu C, Chen W, Wang T. Plantar fascia softening in plantar fasciitis with normal B-mode sonography. Skeletal Radiol. 2015;(7):1603–7. https://doi.org/10.1007/s00256-015-2215-4.

  22. Magarelli N, Carducci C, Bucalo C, Filograna L, Rapisarda S, De Waure C, et al. Sonoelastography for qualitative and quantitative evaluation of superficial soft tissue lesions : a feasibility study. Eur Radiol. 2014;24:566–73.

    Article  PubMed  Google Scholar 

  23. Tavare AN, Alfuraih FAM, Hensor EMA, Alfuraih AM, Hensor EMA, Astrinakis E, et al. Shear-wave elastography of benign versus malignant musculoskeletal soft-tissue masses : comparison with conventional US and MRI. Radiology. 2019;00:1–8.

    Google Scholar 

  24. Bradley M. The role of sonoelastography in planning percutaneous biopsy of soft tissue tumours. Ultrasound. 2015 Nov;23(4):212–5.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pass B, Jafari M, Rowbotham E, Hensor EMA, Gupta H, Robinson P. Do quantitative and qualitative shear wave elastography have a role in evaluating musculoskeletal soft tissue masses ? Eur Radiol. 2016. https://doi.org/10.1007/s00330-016-4427-y.

  26. Eng J. Sample size estimation: how many individuals should be studied? Radiology. 2003 May;227(2):309–13.

    Article  PubMed  Google Scholar 

  27. Aubry S, Risson J-R, Kastler A, Barbier-Brion B, Siliman G, Runge M, et al. Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography. Skeletal Radiol [Internet]. 2013 [cited 2013 Sep 22];42(8):1143–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23708047.

  28. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    Article  PubMed  CAS  Google Scholar 

  29. Dangoor A, Seddon B, Gerrand C, Grimer R, Whelan J, Judson I. UK guidelines for the management of soft tissue sarcomas. Clin Sarcoma Res. 2016;6(1):20 Available from: http://clinicalsarcomaresearch.biomedcentral.com/articles/10.1186/s13569-016-0060-4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jin W, Kim GY, Park SY, Chun YS, Nam DH, Park JS, et al. The spectrum of vascularized superficial soft-tissue tumors on sonography with a histopathologic correlation: part 1. Benign Tumors Am J Roentgenol. 2010;195(August):446–53.

    Article  Google Scholar 

  31. Nagano S, Yahiro Y, Yokouchi M, Setoguchi T, Ishidou Y. Doppler ultrasound for diagnosis of soft tissue sarcoma : efficacy of ultrasound-based screening score. Radiol Oncol. 2015;49(2):135–40.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tagliafico A, Truini M, Spina B, Cambiaso P, Zaottini F, Bignotti B, et al. Follow-up of recurrences of limb soft tissue sarcomas in patients with localized disease : performance of ultrasound. Eur Radiol. 2015;25:2764–70.

    Article  PubMed  Google Scholar 

  33. Verstraete KL, De Deene Y, Roels H, Dierick A, Uyttendaele D, Kunnen M. Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging--parametric “first-pass” images depict tissue vascularization and perfusion. Radiology. 1994 Sep;192(3):835–43.

    Article  PubMed  CAS  Google Scholar 

  34. Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T. Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metastasis. 2014;7:9–18 Available from: https://www.ncbi.nlm.nih.gov/pubmed/24926201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yoon GY, Cha JH, Kim HH, Shin HJ, Chae EY, Choi WJ. Sonographic features that can be used to differentiate between small triple-negative breast cancer and fibroadenoma. Ultrasonography. 2018;37(2):149–56. https://doi.org/10.14366/usg.17036.

    Article  PubMed  Google Scholar 

  36. Ahuja AT, Ying M, Ho SY, Antonio G, Lee YP, King AD, et al. Ultrasound of malignant cervical lymph nodes. Cancer Imaging. 2008;8(1):48–56 Available from: https://www.ncbi.nlm.nih.gov/pubmed/18390388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hahn S, Lee YH, Lee SH, Suh J-S. Value of the strain ratio on ultrasonic elastography for differentiation of benign and malignant soft tissue tumors. J Ultrasound Med. 2017;36(1):121–7.

    Article  PubMed  Google Scholar 

  38. Kransdorf MJ, Bancroft LW, Peterson JJ, Murphey MD, Foster WC, Temple HT. Imaging of fatty tumors: distinction of lipoma and well-differentiated liposarcoma. Radiology. 2002;224(1):99–104. https://doi.org/10.1148/radiol.2241011113.

    Article  PubMed  Google Scholar 

  39. Yeoh HJ, Kim T, Ryu JA. The feasibility of shear wave elastography for diagnosing superficial benign soft tissue masses. Ultrasonography. 2018:1–7.

  40. Elkateb Hachemi M, Callé S, Remenieras JP. Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements. Ultrasounics. 2006;44:e221–5.

    Article  Google Scholar 

  41. Brisson M, Kashima T, Delaney D, Tirabosco R, Clarke A, Cro S, et al. MRI characteristics of lipoma and atypical lipomatous tumor/well-differentiated liposarcoma: retrospective comparison with histology and MDM2 gene amplification. Skelet Radiol. 2013;42(5):635–47.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank my colleagues, Oswestry Radiologists and Miss Cribb, Consultant Orthopaedic Surgeon, for enabling this study. Thank you to Dr. Y Berkowitz, Dr. S Greenwood, Dr. R Moutinho, Dr. L Connell, Dr. Y Arlachov and Mrs. D Sissons for their assistance in the repeatability measurements. Thank you to the pathologists at the Royal National Orthopaedic Hospital in Stanmore for their histological diagnosis.

Funding

This study was funded by a grant from the British Society of Skeletal Radiologists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Winn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Statement of informed consent

Written and informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winn, N., Baldwin, J., Cassar-Pullicino, V. et al. Characterization of soft tissue tumours with ultrasound, shear wave elastography and MRI. Skeletal Radiol 49, 869–881 (2020). https://doi.org/10.1007/s00256-019-03363-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-019-03363-1

Keywords

Navigation