Skip to main content
Log in

Are patients more likely to have hip osteoarthritis progression and femoral head collapse after hip steroid/anesthetic injections? A retrospective observational study

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate progression of osteoarthritis and femoral head articular surface collapse in hip steroid/anesthetic injection patients (HIPs).

Materials and methods

This study was IRB-approved and HIPAA-compliant. Two musculoskeletal radiologists performed retrospective, blinded reviews of radiography for 70 HIPs (40 mg triamcinolone/4 mL 0.5% preservative-free ropivacaine) with a 3- to 10-month follow-up and two control groups: demographic-matched patients with similar hip radiograph follow-up duration but no injection; and glenohumeral joint injection patients. Discordant evaluations were adjudicated by a third, senior reader. Groups were compared using Fisher’s exact and unpaired t tests.

Results

There were 70 HIPs (mean age 67 ± 17 (range 19–92) years; 44 women, 26 men), who were followed for a mean of 6 ± 2 (3–12) months. Thirty-one (31 out of 70, 44%) of HIPs had progression of osteoarthritis after injection, versus 17 out of 70 (24%) of hip controls (HCs) and 13 out of 44 (30%) of glenohumeral injection patients (GIPs). This difference between HIPs and HCs was statistically significant (p = 0.02) but not that between HIPs and GIPs (0.17). Twelve (12 out of 70, 17%) HIPs had new collapse, compared with 1 out of 70 (1%) of HCs and 1 out of 44 (2%) of GIPs. This difference was statistically significant (HCs: p = 0.002; GIPs: p = 0.02).

Conclusion

Hip steroid/anesthetic injection patients are more likely to demonstrate osteoarthritis progression and femoral head collapse than HC and GIPs in the injected joint 3–12 months after steroid and anesthetic injection. Further evaluation of hip injectates and the injection population is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention (CDC). Prevalence and most common causes of disability among adults—United States, 2005. MMWR Morb Mortal Wkly Rep. 2009;58:421–6.

    Google Scholar 

  2. Centers for Disease Control and Prevention. Osteoarthritis. Accessed 12 October 2017. Available from: http://www.cdc.gov/arthritis/basics/osteoarthritis.htm

  3. McAlindon TE, LaValley MP, Harvey WF, Price LL, Driban JB, Zhang M, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA. 2017;317:1967–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Arroll B, Goodyear-Smith F. Corticosteroid injections for osteoarthritis of the knee: meta-analysis. BMJ. 2004;328:869.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage. 2013;21:16–21.

    Article  PubMed  CAS  Google Scholar 

  6. Roemer FW, Guermazi A, Felson DT, Niu J, Nevitt MC, Crema MD, et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis. 2011;70:1804–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hill CL, Hunter DJ, Niu J, Clancy M, Guermazi A, Genant H, et al. Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis. 2007;66:1599–603.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee YK, Lee GY, Lee JW, Lee E, Kang HS. Intra-articular injections in patients with femoroacetabular impingement: a prospective, randomized, double-blind, cross-over study. J Korean Med Sci. 2016;31:1822–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Huebner KD, Shrive NG, Frank CB. Dexamethasone inhibits inflammation and cartilage damage in a new model of post-traumatic osteoarthritis. J Orthop Res. 2014;32:566–72.

    Article  PubMed  CAS  Google Scholar 

  10. Yamamoto T, Schneider R, Iwamoto Y, Bullough PG. Rapid destruction of the femoral head after a single intraarticular injection of corticosteroid into the hip joint. J Rheumatol. 2006;33:1701–4.

    PubMed  Google Scholar 

  11. Zheng H, Chen C. Body mass index and risk of knee osteoarthritis: systematic review and meta-analysis of prospective studies. BMJ Open. 2015;5:e007568.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yamamoto T, Iwamoto Y, Schneider R, Bullough PG. Histopathological prevalence of subchondral insufficiency fracture of the femoral head. Ann Rheum Dis. 2008;67:150–3.

    Article  PubMed  CAS  Google Scholar 

  13. Ikemura S, Yamamoto T, Motomura G, Nakashima Y, Mawatari T, Iwamoto Y. The utility of clinical features for distinguishing subchondral insufficiency fracture from osteonecrosis of the femoral head. Arch Orthop Trauma Surg. 2013;133:1623–7.

    Article  PubMed  Google Scholar 

  14. Rafii M, Mitnick H, Klug J, Firooznia H. Insufficiency fracture of the femoral head: MR imaging in three patients. AJR Am J Roentgenol. 1997;168(1):159–63.

    Article  PubMed  CAS  Google Scholar 

  15. Murphey MD, Foreman KL, Klassen-Fischer MK, Fox MG, Chung EM, Kransdorf MJ. From the radiologic pathology archives imaging of osteonecrosis: radiologic-pathologic correlation. Radiographics. 2014;34:1003–28.

    Article  PubMed  Google Scholar 

  16. Stevens K, Tao C, Lee S-U, Salem N, Vandevenne J, Cheng C, et al. Subchondral fractures in osteonecrosis of the femoral head: comparison of radiography, CT, and MR imaging. AJR Am J Roentgenol. 2003;180:363–8.

    Article  PubMed  Google Scholar 

  17. Hollander JL. The local effects of compound F (hydrocortisone) injected into joints. Bull Rheum Dis. 1951;2:3–4.

    PubMed  CAS  Google Scholar 

  18. Hollander JL, Brown EM, Jessar RA, Brown CY. Comparative effects of compound F (17-hydroxycorticosterone) and cortisone injected locally into the rheumatoid arthritic joint. Ann Rheum Dis. 1951;10:473–6.

    PubMed  CAS  Google Scholar 

  19. Ostergaard M, Halberg P. Intra-articular corticosteroids in arthritic disease: a guide to treatment. BioDrugs. 1998;9:95–103.

    Article  PubMed  CAS  Google Scholar 

  20. Heimann WG, Freiberger RH. Avascular necrosis of the femoral and humeral heads after high-dosage corticosteroid therapy. N Engl J Med. 1960;263:672–5.

    Article  PubMed  CAS  Google Scholar 

  21. Drescher W, Schlieper G, Floege J, Eitner F. Steroid-related osteonecrosis—an update. Nephrol Dial Transplant. 2011;26:2728–31.

    Article  PubMed  CAS  Google Scholar 

  22. O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145:1835–41.

    Article  PubMed  CAS  Google Scholar 

  23. Jia D, O’Brien CA, Stewart SA, Manolagas SC, Weinstein RS. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology. 2006;147:5592–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Weinstein RS, Wan C, Liu Q, Wang Y, Almeida M, O’Brien CA, et al. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell. 2010;9:147–61.

    Article  PubMed  CAS  Google Scholar 

  25. Kabata T, Kubo T, Matsumoto T, Nishino M, Tomita K, Katsuda S, et al. Apoptotic cell death in steroid induced osteonecrosis: an experimental study in rabbits. J Rheumatol. 2000;27:2166–71.

    PubMed  CAS  Google Scholar 

  26. Calder JDF, Buttery L, Revell PA, Pearse M, Polak JM. Apoptosis—a significant cause of bone cell death in osteonecrosis of the femoral head. J Bone Joint Surg (Br). 2004;86:1209–13.

    Article  CAS  Google Scholar 

  27. Kenalog-40 [Internet]. Accessed 5 Jan 2018. Available from: https://www.rxlist.com/kenalog-40-drug.htm

  28. Hwang H, Park J, Lee WK, Lee WH, Leigh J-H, Lee JJ, et al. Crystallization of local anesthetics when mixed with corticosteroid solutions. Ann Rehabil Med. 2016;40:21–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Burki V, Paternotte S, Dougados M, Ayral X. Rapidly destructive tibiofemoral knee osteoarthritis: clinicoradiological presentation and outcome after global medical treatment including non-arthroscopic joint lavage plus corticosteroid injection. A single center retrolective study. Joint Bone Spine. 2014;81:142–8.

    Article  PubMed  Google Scholar 

  30. Lequesne M, Ray G. Rapid idiopathic destructive coxarthrosis. Prospective etiologic study of 27 cases. Rev Rhum Mal Osteoartic. 1989;56:115–9.

    PubMed  CAS  Google Scholar 

  31. Boutry N, Paul C, Leroy X, Fredoux D, Migaud H, Cotten A. Rapidly destructive osteoarthritis of the hip: MR imaging findings. AJR Am J Roentgenol. 2002;179:657–63.

    Article  PubMed  Google Scholar 

  32. Laroche M, Moineuse C, Durroux R, Mazières B, Puget J. Can ischemic hip disease cause rapidly destructive hip osteoarthritis? A case report. Joint Bone Spine. 2002;69:76–80.

    Article  PubMed  Google Scholar 

  33. Arlet J, Ficat P, Mazières B. Coxarthroses due to ischemia. Ischemic coxarthropathy. Rev Rhum Mal Osteoartic. 1978;45:549–60.

    PubMed  CAS  Google Scholar 

  34. Ryu KN, Kim EJ, Yoo MC, Park YK, Sartoris DJ, Resnick D. Ischemic necrosis of the entire femoral head and rapidly destructive hip disease: potential causative relationship. Skeletal Radiol. 1997;26:143–9.

    Article  PubMed  CAS  Google Scholar 

  35. Niimi R, Hasegawa M, Sudo A, Uchida A. Rapidly destructive coxopathy after subchondral insufficiency fracture of the femoral head. Arch Orthop Trauma Surg. 2005;125:410–3.

    Article  PubMed  Google Scholar 

  36. Yamamoto T, Schneider R, Iwamoto Y, Bullough PG. Rapid acetabular osteolysis secondary to subchondral insufficiency fracture. J Rheumatol. 2007;34:592–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie Y. Chang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was waived for individual participants included in the study. The study was approved by the local Institutional Review Board (IRB) and HIPAA-compliant.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 4 Pre-injection severity of osteoarthritis, pre-injection osteonecrosis, and pre-injection collapse separated by reader 1 and reader 2
Table 5 Hip injection patients versus hip control (no injection) and shoulder injection groups, separated by reader 1 and reader 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simeone, F.J., Vicentini, J.R.T., Bredella, M.A. et al. Are patients more likely to have hip osteoarthritis progression and femoral head collapse after hip steroid/anesthetic injections? A retrospective observational study. Skeletal Radiol 48, 1417–1426 (2019). https://doi.org/10.1007/s00256-019-03189-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-019-03189-x

Keywords

Navigation