Skeletal Radiology

, Volume 48, Issue 5, pp 721–728 | Cite as

Susceptibility-weighted MR imaging to improve the specificity of erosion detection: a prospective feasibility study in hand arthritis

  • Sevtap Tugce Ulas
  • Torsten DiekhoffEmail author
  • Kay Geert Armin Hermann
  • Denis Poddubnyy
  • Bernd Hamm
  • Marcus Richard Makowski
Scientific Article



To evaluate the diagnostic potential of susceptibility-weighted imaging (SWI) for the detection of erosions of the hand, compared to T1-weighted (T1w) magnetic resonance imaging (MRI). Computed tomography (CT) was used as a reference standard.

Materials and methods

We prospectively investigated 37 patients with suspected arthritic activity of the hand. All patients underwent T1w, SWI, and CT on the same day. Patients were randomized to MRI or CT first. CT, T1w, SWI, and T1w/SWI were scored for erosions according to OMERACT RAMRIS guidelines. Specificity, sensitivity, and diagnostic accuracy were separately calculated for T1w, SWI, and T1w/SWI on a per-patient and per-bone basis using CT as reference. The one-tailed McNemar test was performed to test the number of erosion-positive patients in T1w, SWI, and T1w/SWI for non-inferiority. Measured erosion sizes were compared using Pearson’s test.


CT was positive for erosions in 16 patients and 55 bones. SWI and T1w/SWI had superior diagnostic accuracy (91.2 and 93.8%) compared to T1w (87.8%) driven by a higher specificity (93.8 and 96.5%) compared to T1w (88.8%). On the patient level, SWI and T1w/SWI showed non-inferiority (p = 0.11 and p = 0.38) but not T1w alone (p < 0.0001). The lesion size on CT correlated better with SWI (Pearson’s r = 0.92) compared to T1w (r = 0.69).


Adding SWI to a standard MRI protocol has the potential to improve erosion detection in hands by increasing specificity. SWI depicts bony erosions more accurately compared to standard MRI techniques.


Magnetic resonance imaging Computed tomography Erosive arthropathy Rheumatoid arthritis 



The authors thank Mrs. Bettina Herwig for language editing.

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

256_2018_3116_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 30 kb)


  1. 1.
    Brinkmann GH, Norli ES, Bøyesen P, van der Heijde D, Grøvle L, Haugen AJ, et al. Role of erosions typical of rheumatoid arthritis in the 2010 ACR/EULAR rheumatoid arthritis classification criteria: results from a very early arthritis cohort. Ann Rheum Dis. 2017;76(11):1911–4.CrossRefGoogle Scholar
  2. 2.
    Knevel R, Lukas C, van der Heijde D, Rincheval N, Combe B, van der Helm-van Mil AH. Defining erosive disease typical of RA in the light of the ACR/EULAR 2010 criteria for rheumatoid arthritis; results of the data driven phase. Ann Rheum Dis. 2013;72(4):590–5.CrossRefGoogle Scholar
  3. 3.
    Lee CH, Srikhum W, Burghardt AJ, Virayavanich W, Imboden JB, Link TM, et al. Correlation of structural abnormalities of the wrist and metacarpophalangeal joints evaluated by high-resolution peripheral quantitative computed tomography, 3 Tesla magnetic resonance imaging and conventional radiographs in rheumatoid arthritis. Int J Rheum Dis. 2015;18(6):628–39.CrossRefGoogle Scholar
  4. 4.
    Scheel AK, Hermann KG, Ohrndorf S, Werner C, Schirmer C, Detert J, et al. Prospective 7-year follow-up imaging study comparing radiography, ultrasonography, and magnetic resonance imaging in rheumatoid arthritis finger joints. Ann Rheum Dis. 2006;65(5):595–600.CrossRefGoogle Scholar
  5. 5.
    Diekhoff T, Hermann KG, Greese J, Schwenke C, Poddubnyy D, Hamm B, et al. Comparison of MRI with radiography for detecting structural lesions of the sacroiliac joint using CT as standard of reference: results from the SIMACT study. Ann Rheum Dis. 2017;76(9):1502–8.CrossRefGoogle Scholar
  6. 6.
    Østergaard M, Peterfy CG, Bird P, Gandjbakhch F, Glinatsi D, Eshed I, et al. The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system: updated recommendations by the OMERACT MRI in arthritis working group. J Rheumatol. 2017;44(11):1706–12.CrossRefGoogle Scholar
  7. 7.
    Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, et al. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging. 2017;46(2):323–37.CrossRefGoogle Scholar
  8. 8.
    Shah LM, Hanrahan CJ. MRI of spinal bone marrow: part I, techniques and normal age-related appearances. AJR Am J Roentgenol. 2011;197(6):1298–308.CrossRefGoogle Scholar
  9. 9.
    Goldbach-Mansky R, Woodburn J, Yao L, Lipsky PE. Magnetic resonance imaging in the evaluation of bone damage in rheumatoid arthritis: a more precise image or just a more expensive one? Arthritis Rheum. 2003;48(3):585–9.CrossRefGoogle Scholar
  10. 10.
    McQueen F, Lassere M, Edmonds J, Conaghan P, Peterfy C, Bird P, et al. OMERACT rheumatoid arthritis magnetic resonance imaging studies. Summary of OMERACT 6 MR imaging module. J Rheumatol. 2003;30(6):1387–92.Google Scholar
  11. 11.
    Wycliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke EM, Kido DK. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging. 2004;20(3):372–7.CrossRefGoogle Scholar
  12. 12.
    Thomas B, Somasundaram S, Thamburaj K, Kesavadas C, Gupta AK, Bodhey NK, et al. Clinical applications of susceptibility weighted MR imaging of the brain—a pictorial review. Neuroradiology. 2008;50(2):105–16.CrossRefGoogle Scholar
  13. 13.
    Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol. 2009;30(1):19–30.CrossRefGoogle Scholar
  14. 14.
    Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol. 2009;30(2):232–52.CrossRefGoogle Scholar
  15. 15.
    Yamada N, Imakita S, Sakuma T, Takamiya M. Intracranial calcification on gradient-echo phase image: depiction of diamagnetic susceptibility. Radiology. 1996;198(1):171–8.CrossRefGoogle Scholar
  16. 16.
    Böker SM, Adams LC, Bender YY, Wagner M, Diekhoff T, Fallenberg E, et al. Evaluation of vertebral body fractures using susceptibility-weighted magnetic resonance imaging. Eur Radiol. 2018;28(5):2228–35.CrossRefGoogle Scholar
  17. 17.
    Nörenberg D, Armbruster M, Bender YN, Walter T, Ebersberger HU, Diederichs G, et al. Diagnostic performance of susceptibility-weighted magnetic resonance imaging for the assessment of sub-coracoacromial spurs causing subacromial impingement syndrome. Eur Radiol. 2017;27(3):1286–94.CrossRefGoogle Scholar
  18. 18.
    Wu Z, Mittal S, Kish K, Yu Y, Hu J, Haacke EM. Identification of calcification with MRI using susceptibility-weighted imaging: a case study. J Magn Reson Imaging. 2009;29(1):177–82.CrossRefGoogle Scholar
  19. 19.
    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Ann Rheum Dis. 2010;69(9):1580–8.CrossRefGoogle Scholar
  20. 20.
    Østergaard M, Edmonds J, McQueen F, Peterfy C, Lassere M, Ejbjerg B, et al. An introduction to the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Ann Rheum Dis. 2005;64(Suppl 1):i3–7.CrossRefGoogle Scholar
  21. 21.
    Tan YK, Conaghan PG. Imaging in rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2011;25(4):569–84.CrossRefGoogle Scholar
  22. 22.
    Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet. 2001;358(9285):903–11.CrossRefGoogle Scholar
  23. 23.
    Aletaha D, Smolen J, Ward MM. Measuring function in rheumatoid arthritis: identifying reversible and irreversible components. Arthritis Rheum. 2006;54(9):2784–92.CrossRefGoogle Scholar
  24. 24.
    Baum R, Gravallese EM. Bone as a target organ in rheumatic disease: impact on osteoclasts and osteoblasts. Clin Rev Allergy Immunol. 2016;51(1):1–15.CrossRefGoogle Scholar
  25. 25.
    Heinlen L, Humphrey MB. Skeletal complications of rheumatoid arthritis. Osteoporos Int. 2017;28(10):2801–12.CrossRefGoogle Scholar
  26. 26.
    McQueen FM, Stewart N, Crabbe J, Robinson E, Yeoman S, Tan PL, et al. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals progression of erosions despite clinical improvement. Ann Rheum Dis. 1999;58(3):156–63.CrossRefGoogle Scholar
  27. 27.
    Husberg M, Bernfort L, Hallert E. Costs and disease activity in early rheumatoid arthritis in 1996-2000 and 2006-2011, improved outcome and shift in distribution of costs: a two-year follow-up. Scand J Rheumatol. 2018;47(5):378–383.Google Scholar
  28. 28.
    Døhn UM, Ejbjerg BJ, Court-Payen M, Hasselquist M, Narvestad E, Szkudlarek M, et al. Are bone erosions detected by magnetic resonance imaging and ultrasonography true erosions? A comparison with computed tomography in rheumatoid arthritis metacarpophalangeal joints. Arthritis Res Ther. 2006;8(4):R110.CrossRefGoogle Scholar
  29. 29.
    Hoving JL, Buchbinder R, Hall S, Lawler G, Coombs P, McNealy S, et al. A comparison of magnetic resonance imaging, sonography, and radiography of the hand in patients with early rheumatoid arthritis. J Rheumatol. 2004;31(4):663–75.Google Scholar
  30. 30.
    Saran S, Bagarhatta M, Saigal R. Diagnostic accuracy of ultrasonography in detection of destructive changes in small joints of hands in patients of rheumatoid arthritis: a comparison with magnetic resonance imaging. J Assoc Physicians India. 2016;64(11):26–30.Google Scholar
  31. 31.
    Døhn UM, Terslev L, Szkudlarek M, Hansen MS, Hetland ML, Hansen A, et al. Detection, scoring and volume assessment of bone erosions by ultrasonography in rheumatoid arthritis: comparison with CT. Ann Rheum Dis. 2013;72(4):530–4.CrossRefGoogle Scholar
  32. 32.
    Bai Y, Wang MY, Han YH, Dou SW, Lin Q, Guo Y, et al. Susceptibility weighted imaging: a new tool in the diagnosis of prostate cancer and detection of prostatic calcification. PLoS One. 2013;8(1):e53237.CrossRefGoogle Scholar
  33. 33.
    Zhu WZ, Qi JP, Zhan CJ, Shu HG, Zhang L, Wang CY, et al. Magnetic resonance susceptibility weighted imaging in detecting intracranial calcification and hemorrhage. Chin Med J. 2008;121(20):2021–5.CrossRefGoogle Scholar
  34. 34.
    Gupta RK, Rao SB, Jain R, Pal L, Kumar R, Venkatesh SK, et al. Differentiation of calcification from chronic hemorrhage with corrected gradient echo phase imaging. J Comput Assist Tomogr. 2001;25(5):698–704.CrossRefGoogle Scholar
  35. 35.
    Nörenberg D, Ebersberger HU, Walter T, Ockert B, Knobloch G, Diederichs G, et al. Diagnosis of calcific tendonitis of the rotator cuff by using susceptibility-weighted MR imaging. Radiology. 2016;278(2):475–84.CrossRefGoogle Scholar

Copyright information

© ISS 2018

Authors and Affiliations

  1. 1.Department of RadiologyCharité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität BerlinBerlinGermany
  2. 2.Department of Radiology (CCM)Charité – Universitätsmedizin BerlinBerlinGermany
  3. 3.Department of RheumatologyCharité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Humboldt-Universität zu Berlin, Freie Universität BerlinBerlinGermany

Personalised recommendations