Skip to main content
Log in

Injuries of the adolescent girl athlete: a review of imaging findings

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

With the rising participation of girls in sports at both the recreational and elite levels, there has also been increased awareness of injuries common in this athlete population. Anatomic differences between boys and girls cause girl athletes to be predisposed to certain injuries. Certain behavioral patterns, such as eating disorders, also cause problems specific to girl athletes that may result in injury. Imaging plays a large role in diagnosis and ongoing management, but there has been only scant literature dedicated to the specific topic of imaging in girl athletes. The purpose of this article is to review the imaging findings and recommendations for injuries and other conditions affecting the adolescent girl athlete. This article first provides an overview of the key anatomic differences between boys and girls, including both static and dynamic factors, as well as non-anatomic differences, such as hormonal factors, and discusses how these differences contribute to the injury patterns that are seen more typically in girls. The article then reviews the imaging findings in injuries that are commonly seen in girl athletes. There is also a discussion of the "female athlete triad," which consists of osteoporosis, disordered eating, and amenorrhea, and the role of imaging in this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Report of Trends and Participation in Organized Youth Sports. In: Sports NCoY, ed. NCYS membership survey 2008.

  2. Carpenter LJ, Acosta RV. Women in intercollegiate sport: a longitudinal national study; thirty-five year update, 1977-2012. Human Kinetics. 2012.

  3. High School Athletics Participation Survey. In: Associations NFoSHS, ed. 2010–2011.

  4. Jansson A, Saartok T, Werner S, Renstrom P. General joint laxity in 1845 Swedish school children of different ages: age- and gender-specific distributions. Acta Paediatr. 2004;93(9):1202–6.

    Article  CAS  PubMed  Google Scholar 

  5. Marnach ML, Ramin KD, Ramsey PS, Song SW, Stensland JJ, An KN. Characterization of the relationship between joint laxity and maternal hormones in pregnancy. Obstet Gynecol. 2003;101(2):331–5.

    CAS  PubMed  Google Scholar 

  6. Gallagher D, Visser M, De Meersman RE, Sepulveda D, Baumgartner RN, Pierson RN, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol (1985) 1997; 83(1):229–239.

    Article  CAS  PubMed  Google Scholar 

  7. Abe T, Kearns CF, Fukunaga T. Sex differences in whole-body skeletal muscle mass measured by magnetic resonance imaging and its distribution in young Japanese adults. Br J Sports Med. 2003;37(5):436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–150.

    Article  CAS  PubMed  Google Scholar 

  9. Zeller BL, McCrory JL, Kibler WB, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31(3):449–56.

    Article  PubMed  Google Scholar 

  10. Braten M, Terjesen T, Rossvoll I. Femoral anteversion in normal adults. Ultrasound measurements in 50 men and 50 women. Acta Orthop Scand. 1992;63(1):29–32.

    Article  CAS  PubMed  Google Scholar 

  11. Hilibrand MJ, Hammoud S, Bishop M, Woods D, Fredrick RW, Dodson CC. Common injuries and ailments of the female athlete; pathophysiology, treatment and prevention. Phys Sportsmed. 2015;43(4):403–11.

    Article  PubMed  Google Scholar 

  12. Shelbourne KD, Davis TJ, Klootwyk TE. The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med. 1998;26(3):402–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299–311.

    Article  PubMed  Google Scholar 

  14. Ford KR, Myer GD, Smith RL, Vianello RM, Seiwert SL, Hewett TE. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin Biomech (Bristol, Avon). 2006;21(1):33–40.

    Article  Google Scholar 

  15. Zazulak BT, Ponce PL, Straub SJ, Medvecky MJ, Avedisian L, Hewett TE. Gender comparison of hip muscle activity during single-leg landing. J Orthop Sports Phys Ther. 2005;35(5):292–9.

    Article  PubMed  Google Scholar 

  16. Willson JD, Ireland ML, Davis I. Core strength and lower extremity alignment during single leg squats. Med Sci Sports Exerc. 2006;38(5):945–52.

    Article  PubMed  Google Scholar 

  17. Reynolds ML, Ransdell LB, Lucas SM, Petlichkoff LM, Gao Y. An examination of current practices and gender differences in strength and conditioning in a sample of varsity high school athletic programs. J Strength Cond Res. 2012;26(1):174–83.

    Article  PubMed  Google Scholar 

  18. Stracciolini A, Yen YM, d'Hemecourt PA, Lewis CL, Sugimoto D. Sex and growth effect on pediatric hip injuries presenting to sports medicine clinic. J Pediatr Orthop B. 2016;25(4):315–21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mason JB. Acetabular labral tears in the athlete. Clin Sports Med. 2001;20(4):779–90.

    Article  CAS  PubMed  Google Scholar 

  20. McCarthy JC, Noble PC, Schuck MR, Wright J, Lee J. The Otto E. Aufranc Award: the role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res. 2001;393:25–37.

    Article  Google Scholar 

  21. Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87(7):1012–8.

    Article  CAS  PubMed  Google Scholar 

  22. Bache CE, Clegg J, Herron M. Risk factors for developmental dysplasia of the hip: ultrasonographic findings in the neonatal period. J Pediatr Orthop B. 2002;11(3):212–8.

    PubMed  Google Scholar 

  23. Ziegert AJ, Blankenbaker DG, De Smet AA, Keene JS, Shinki K, Fine JP. Comparison of standard hip MR arthrographic imaging planes and sequences for detection of arthroscopically proven labral tear. AJR Am J Roentgenol. 2009;192(5):1397–400.

    Article  PubMed  Google Scholar 

  24. Dinauer PA, Murphy KP, Carroll JF. Sublabral sulcus at the posteroinferior acetabulum: a potential pitfall in MR arthrography diagnosis of acetabular labral tears. AJR Am J Roentgenol. 2004;183(6):1745–53.

    Article  PubMed  Google Scholar 

  25. Magerkurth O, Jacobson JA, Morag Y, Fessell D, Bedi A, Sekiya JK. Prevalence of the acetabular sublabral sulcus at MR arthrography in patients under 17 years of age: does it exist? Skelet Radiol. 2015;44(7):953–61.

    Article  Google Scholar 

  26. Anderson SE, Siebenrock KA, Tannast M. Femoroacetabular impingement: evidence of an established hip abnormality. Radiology. 2010;257(1):8–13.

    Article  PubMed  Google Scholar 

  27. Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis—what the radiologist should know. AJR Am J Roentgenol. 2007;188(6):1540–52.

    Article  PubMed  Google Scholar 

  28. Piechota M, Maczuch J, Skupinski J, Kukawska-Sysio K, Wawrzynek W. Internal snapping hip syndrome in dynamic ultrasonography. J Ultrason. 2016;16(66):296–303.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hotchkiss BL, Engels JA, Forness M. Hip disorders in the adolescent. Adolesc Med State Art Rev. 2007;18(1):165–81. x-xi

    PubMed  Google Scholar 

  30. Davis KW. Imaging pediatric sports injuries: lower extremity. Radiol Clin N Am. 2010;48(6):1213–35.

    Article  PubMed  Google Scholar 

  31. Sutton KM, Bullock JM. Anterior cruciate ligament rupture: differences between males and females. J Am Acad Orthop Surg. 2013;21(1):41–50.

    Article  PubMed  Google Scholar 

  32. Nguyen AD, Boling MC, Levine B, Shultz SJ. Relationships between lower extremity alignment and the quadriceps angle. Clin J Sport Med. 2009;19(3):201–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Loudon JK, Jenkins W, Loudon KL. The relationship between static posture and ACL injury in female athletes. J Orthop Sports Phys Ther. 1996;24(2):91–7.

    Article  CAS  PubMed  Google Scholar 

  34. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med. 2003;31(6):831–42.

    Article  PubMed  Google Scholar 

  35. Giugliano DN, Solomon JL. ACL tears in female athletes. Phys Med Rehabil Clin N Am. 2007;18(3):417–38. viii

    Article  PubMed  Google Scholar 

  36. Slauterbeck J, Clevenger C, Lundberg W, Burchfield DM. Estrogen level alters the failure load of the rabbit anterior cruciate ligament. J Orthop Res. 1999;17(3):405–8.

    Article  CAS  PubMed  Google Scholar 

  37. Renstrom P, Ljungqvist A, Arendt E, Beynnon B, Fukubayashi T, Garrett W, et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med 2008; 42(6):394–412.

    Article  CAS  PubMed  Google Scholar 

  38. Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999;27(6):699–706.

    Article  CAS  PubMed  Google Scholar 

  39. Boles CA, Ferguson C. The female athlete. Radiol Clin N Am. 2010;48(6):1249–66.

    Article  PubMed  Google Scholar 

  40. DeHaven KE, Lintner DM. Athletic injuries: comparison by age, sport, and gender. Am J Sports Med. 1986;14(3):218–24.

    Article  CAS  PubMed  Google Scholar 

  41. Barber Foss KD, Myer GD, Hewett TE. Epidemiology of basketball, soccer, and volleyball injuries in middle-school female athletes. Phys Sportsmed. 2014;42(2):146–53.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Earl JE, Vetter CS. Patellofemoral pain. Phys Med Rehabil Clin N Am. 2007;18(3):439–58. viii

    Article  PubMed  Google Scholar 

  43. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  44. Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee. 2006;13(1):26–31.

    Article  PubMed  Google Scholar 

  45. Hinckel BB, Gobbi RG, Filho EN, Pecora JR, Camanho GL, Rodrigues MB, et al. Are the osseous and tendinous-cartilaginous tibial tuberosity-trochlear groove distances the same on CT and MRI? Skelet Radiol. 2015;44(8):1085–93.

    Article  Google Scholar 

  46. Dejour H, Walch G, Neyret P, Adeleine P. Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot. 1990;76(1):45–54.

    CAS  PubMed  Google Scholar 

  47. Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics. 2010;30(4):961–81.

    Article  PubMed  Google Scholar 

  48. Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ireland ML, Willson JD, Ballantyne BT, Davis IM. Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther. 2003;33(11):671–6.

    Article  PubMed  Google Scholar 

  50. Palmieri-Smith RM, Wojtys EM, Ashton-Miller JA. Association between preparatory muscle activation and peak valgus knee angle. J Electromyogr Kinesiol. 2008;18(6):973–9.

    Article  PubMed  Google Scholar 

  51. Palmieri-Smith RM, McLean SG, Ashton-Miller JA, Wojtys EM. Association of quadriceps and hamstrings cocontraction patterns with knee joint loading. J Athl Train. 2009;44(3):256–63.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Witvrouw E, Lysens R, Bellemans J, Cambier D, Vanderstraeten G. Intrinsic risk factors for the development of anterior knee pain in an athletic population. A two-year prospective study. Am J Sports Med. 2000;28(4):480–9.

    Article  CAS  PubMed  Google Scholar 

  53. Gholve PA, Scher DM, Khakharia S, Widmann RF, Green DW. Osgood–Schlatter syndrome. Curr Opin Pediatr. 2007;19(1):44–50.

    Article  PubMed  Google Scholar 

  54. Rosenberg ZS, Kawelblum M, Cheung YY, Beltran J, Lehman WB, Grant AD. Osgood-Schlatter lesion: fracture or tendinitis? Scintigraphic, CT, and MR imaging features. Radiology. 1992;185(3):853–8.

    Article  CAS  PubMed  Google Scholar 

  55. Lyon RM, Street CC. Pediatric sports injuries: when to refer or X-ray. Pediatr Clin N Am. 1998;45(1):221–44.

    Article  CAS  Google Scholar 

  56. Auringer ST, Anthony EY. Common pediatric sports injuries. Semin Musculoskelet Radiol. 1999;3(3):247–56.

    Article  PubMed  Google Scholar 

  57. McManama GB Jr. Ankle injuries in the young athlete. Clin Sports Med. 1988;7(3):547–62.

    PubMed  Google Scholar 

  58. Hunter-Griffin LY. Injuries to the leg, ankle, and foot. In: Sullivan JA, Grana WA, editors. The pediatric athlete. Park ridge, IL: American Academy of Orthopaedic Surgeons; 1990. p. 187–98.

    Google Scholar 

  59. Ashman CJ, Klecker RJ, Yu JS. Forefoot pain involving the metatarsal region: differential diagnosis with MR imaging. Radiographics. 2001;21(6):1425–40.

    Article  CAS  PubMed  Google Scholar 

  60. Kinsella S, Carl R. Upper extremity overuse injuries. Clin Pediatr Emerg Med. 2013;14(318)

    Article  Google Scholar 

  61. Davis KW. Imaging pediatric sports injuries: upper extremity. Radiol Clin N Am. 2010;48(6):1199–211.

    Article  PubMed  Google Scholar 

  62. Osbahr DC, Kim HJ, Dugas JR. Little league shoulder. Curr Opin Pediatr. 2010;22(1):35–40.

    Article  PubMed  Google Scholar 

  63. Adams JE. Little league shoulder: osteochondrosis of the proximal humeral epiphysis in boy baseball pitchers. Calif Med. 1966;105(1):22–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoang QB, Mortazavi M. Pediatric overuse injuries in sports. Adv Pediatr Infect Dis. 2012;59(1):359–83.

    Google Scholar 

  65. Zetaruk MN. The young gymnast. Clin Sports Med. 2000;19(4):757–80.

    Article  CAS  PubMed  Google Scholar 

  66. Little JT, Klionsky NB, Chaturvedi A, Soral A, Chaturvedi A. Pediatric distal forearm and wrist injury: an imaging review. Radiographics. 2014;34(2):472–90.

    Article  PubMed  Google Scholar 

  67. Carter SR, Aldridge MJ, Fitzgerald R, Davies AM. Stress changes of the wrist in adolescent gymnasts. Br J Radiol. 1988;61(722):109–12.

    Article  CAS  PubMed  Google Scholar 

  68. Roy S, Caine D, Singer KM. Stress changes of the distal radial epiphysis in young gymnasts. A report of twenty-one cases and a review of the literature. Am J Sports Med. 1985;13(5):301–8.

    Article  CAS  PubMed  Google Scholar 

  69. Dwek JR, Cardoso F, Chung CB. MR imaging of overuse injuries in the skeletally immature gymnast: spectrum of soft-tissue and osseous lesions in the hand and wrist. Pediatr Radiol. 2009;39(12):1310–6.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mandelbaum BR, Bartolozzi AR, Davis CA, Teurlings L, Bragonier B. Wrist pain syndrome in the gymnast. Pathogenetic, diagnostic, and therapeutic considerations. Am J Sports Med. 1989;17(3):305–17.

    Article  CAS  PubMed  Google Scholar 

  71. Hame SL, LaFemina JM, McAllister DR, Schaadt GW, Dorey FJ. Fractures in the collegiate athlete. Am J Sports Med. 2004;32(2):446–51.

    Article  PubMed  Google Scholar 

  72. Arendt EA. Stress fractures and the female athlete. Clin Orthop Relat Res. 2000;372:131–8.

    Article  Google Scholar 

  73. Markey KL. Stress fractures. Clin Sports Med. 1987;6(2):405–25.

    CAS  PubMed  Google Scholar 

  74. Giladi M, Milgrom C, Simkin A, Stein M, Kashtan H, Margulies J, et al. Stress fractures and tibial bone width. a risk factor. J Bone Joint Surg Br. 1987;69(2):326–329.

    Article  Google Scholar 

  75. Behrens SB, Deren ME, Matson A, Fadale PD, Monchik KO. Stress fractures of the pelvis and legs in athletes: a review. Sports Health. 2013;5(2):165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rauh MJ, Macera CA, Trone DW, Shaffer RA, Brodine SK. Epidemiology of stress fracture and lower-extremity overuse injury in female recruits. Med Sci Sports Exerc. 2006;38(9):1571–7.

    Article  PubMed  Google Scholar 

  77. Yeager KK, Agostini R, Nattiv A, Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25(7):775–7.

    Article  CAS  PubMed  Google Scholar 

  78. Byrne S, McLean N. Elite athletes: effects of the pressure to be thin. J Sci Med Sport. 2002;5(2):80–94.

    Article  CAS  PubMed  Google Scholar 

  79. Nichols JF, Rauh MJ, Barrack MT, Barkai HS, Pernick Y. Disordered eating and menstrual irregularity in high school athletes in lean-build and nonlean-build sports. Int J Sport Nutr Exerc Metab. 2007;17(4):364–77.

    Article  PubMed  Google Scholar 

  80. Nichols JF, Rauh MJ, Lawson MJ, Ji M, Barkai HS. Prevalence of the female athlete triad syndrome among high school athletes. Arch Pediatr Adolesc Med. 2006;160(2):137–42.

    Article  PubMed  Google Scholar 

  81. Barrow GW, Saha S. Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med. 1988;16(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  82. Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV, Kleinman PK, et al. Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res. 2010;25(2):298–304.

    Article  PubMed  Google Scholar 

  83. Ackerman KE, Misra M. Bone health and the female athlete triad in adolescent athletes. Phys Sportsmed. 2011;39(1):131–41.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO study group. 1 ed: World Health Organization 1994.

  85. Leib ES, Lewiecki EM, Binkley N, Hamdy RC. International Society for Clinical D. Official positions of the International Society for Clinical Densitometry. J Clin Densitom. 2004;7(1):1–6.

    Article  PubMed  Google Scholar 

  86. Beals KA, Hill AK. The prevalence of disordered eating, menstrual dysfunction, and low bone mineral density among US collegiate athletes. Int J Sport Nutr Exerc Metab. 2006;16(1):1–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara Gaetke-Udager.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shampain, K., Gaetke-Udager, K., Leschied, J.R. et al. Injuries of the adolescent girl athlete: a review of imaging findings. Skeletal Radiol 48, 77–88 (2019). https://doi.org/10.1007/s00256-018-3029-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-018-3029-y

Keywords

Navigation