Skip to main content

Advertisement

Log in

Shoulder muscle volume and fat content in healthy adult volunteers: quantification with DIXON MRI to determine the influence of demographics and handedness

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

We aimed to provide mean values for fat-fraction and volume for full-length bilateral rotator cuff and deltoid muscles in asymptomatic adults selected on the basis of their good musculoskeletal and systemic health, and to understand the influence of gender, age, and arm dominance.

Materials and methods

Seventy-six volunteers aged 20 to 60 years who were screened for normal BMI and high general health were included in the study. MRI was performed at 3 Tesla using three-point DIXON sequences. Volume and fat-signal fraction of the rotator cuff muscles and the deltoid muscle were determined with semi-automated segmentation of entire muscle lengths. Differences according to age, gender, and handedness per muscle were evaluated.

Results

Fat-signal fractions were comparable between genders (mean ± 2 SD, 95% CI, women 7.0 ± 3.0; 6.8–7.2%, men 6.8 ± 2.7; 6.7–7.0%) but did not show convincing changes with age. Higher shoulder muscle volume and lower fat-signal fraction in the dominant arm were shown for teres minor and deltoid (p < 0.01) with similar trends shown for the other rotator cuff muscles.

Conclusions

Bilateral fat-signal fractions and volumes based on entire length shoulder muscles in asymptomatic 20–60 year old adults may provide reference for clinicians. Differences shown according to arm dominance should be considered and may rationalize the need for bilateral imaging in determining appropriate management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Edwards TB, Boulahia A, Kempf JF, Boileau P, Nemoz C, Walch G. The influence of rotator cuff disease on the results of shoulder arthroplasty for primary osteoarthritis: results of a multicenter study. J Bone Joint Surg Am. 2002;84-a(12):2240–8.

  2. Gladstone JN, Bishop JY, Lo IK, Flatow EL. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med. 2007;35(5):719–28.

    Article  PubMed  Google Scholar 

  3. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;304:78–83.

    Google Scholar 

  4. Goutallier D, Postel JM, Gleyze P, Leguilloux P, Van Driessche S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elb Surg. 2003;12(6):550–4.

    Article  Google Scholar 

  5. Young AA, Walch G, Pape G, Gohlke F, Favard L. Secondary rotator cuff dysfunction following total shoulder arthroplasty for primary glenohumeral osteoarthritis: results of a multicenter study with more than five years of follow-up. J Bone Joint Surg Am. 2012;94(8):685–93.

    Article  PubMed  Google Scholar 

  6. Osti L, Buda M, Del Buono A. Fatty infiltration of the shoulder: diagnosis and reversibility. Muscles Ligaments Tendons J. 2013;3(4):351–4.

    PubMed  Google Scholar 

  7. Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elb Surg. 1999;8(6):599–605.

    Article  CAS  Google Scholar 

  8. Melis B, DeFranco MJ, Chuinard C, Walch G. Natural history of fatty infiltration and atrophy of the supraspinatus muscle in rotator cuff tears. Clin Orthop Relat Res. 2010;468(6):1498–505.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hattrup SJ. Rotator cuff repair: relevance of patient age. J Shoulder Elb Surg. 1995;4(2):95–100.

    Article  CAS  Google Scholar 

  10. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Plate JF, Pace LA, Seyler TM, et al. Age-related changes affect rat rotator cuff muscle function. J Shoulder Elb Surg. 2014;23(1):91–8.

    Article  Google Scholar 

  12. Plate JF, Bates CM, Mannava S, et al. Age-related degenerative functional, radiographic, and histological changes of the shoulder in nonhuman primates. J Shoulder Elb Surg. 2013;22(8):1019–29.

    Article  Google Scholar 

  13. Santago AC 2nd, Plate JF, Shively CA, Register TC, Smith TL, Saul KR. Age-related structural changes in upper extremity muscle tissue in a nonhuman primate model. J Shoulder Elb Surg. 2015;24(10):1660–8.

    Article  Google Scholar 

  14. Pfirrmann CW, Schmid MR, Zanetti M, Jost B, Gerber C, Hodler J. Assessment of fat content in supraspinatus muscle with proton MR spectroscopy in asymptomatic volunteers and patients with supraspinatus tendon lesions. Radiology. 2004;232(3):709–15.

    Article  PubMed  Google Scholar 

  15. Lee S, Lucas RM, Lansdown DA, et al. Magnetic resonance rotator cuff fat fraction and its relationship with tendon tear severity and subject characteristics. J Shoulder Elb Surg. 2015;24(9):1442–51.

    Article  Google Scholar 

  16. Samagh SP, Kramer EJ, Melkus G, et al. MRI quantification of fatty infiltration and muscle atrophy in a mouse model of rotator cuff tears. J Orthop Res. 2013;31(3):421–6.

    Article  PubMed  Google Scholar 

  17. Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153(1):189–94.

    Article  PubMed  CAS  Google Scholar 

  18. Kawamitsu H, Kaji Y, Ohara T, Sugimura K. Feasibility of quantitative intrahepatic lipid imaging applied to the magnetic resonance dual gradient echo sequence. Magn Reson Med Sci. 2003;2(1):47–50.

    Article  PubMed  CAS  Google Scholar 

  19. van Werven JR, Marsman HA, Nederveen AJ, et al. Assessment of hepatic steatosis in patients undergoing liver resection: comparison of US, CT, T1-weighted dual-echo MR imaging, and point-resolved 1H MR spectroscopy. Radiology. 2010;256(1):159–68.

    Article  PubMed  Google Scholar 

  20. Fischer MA, Nanz D, Shimakawa A, et al. Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiology. 2013;266(2):555–63.

    Article  PubMed  Google Scholar 

  21. Fischer MA, Raptis DA, Montani M, et al. Liver fat quantification by dual-echo MR imaging outperforms traditional histopathological analysis. Acad Radiol. 2012;19(10):1208–14.

    Article  PubMed  Google Scholar 

  22. Nardo L, Karampinos DC, Lansdown DA, et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI. J Magn Reson Imaging. 2014;39(5):1178–85.

    Article  PubMed  Google Scholar 

  23. Fischmann A, Hafner P, Fasler S, et al. Quantitative MRI can detect subclinical disease progression in muscular dystrophy. J Neurol. 2012;259(8):1648–54.

    Article  PubMed  CAS  Google Scholar 

  24. Gaeta M, Scribano E, Mileto A, et al. Muscle fat fraction in neuromuscular disorders: dual-echo dual-flip-angle spoiled gradient-recalled MR imaging technique for quantification—a feasibility study. Radiology. 2011;259(2):487–94.

    Article  PubMed  Google Scholar 

  25. Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging. 2008;28(3):543–58.

    Article  PubMed  Google Scholar 

  26. Marcon M, Berger N, Manoliu A, et al. Normative values for volume and fat content of the hip abductor muscles and their dependence on side, age and gender in a healthy population. Skelet Radiol. 2016;45(4):465–74.

    Article  Google Scholar 

  27. Crawford RJ, Filli L, Elliott JM, et al. Age- and level-dependence of fatty infiltration in lumbar paravertebral muscles of healthy volunteers. AJNR Am J Neuroradiol. 2016;37(4):742–8.

    Article  PubMed  CAS  Google Scholar 

  28. Ulbrich EJ, Nanz D, Leinhard OD, Marcon M, Fischer MA. Whole-body adipose tissue and lean muscle volumes and their distribution across gender and age: MR-derived normative values in a normal-weight Swiss population. J Magn Reson Imaging. 2018;79(1):449–58.

    Google Scholar 

  29. Ulbrich EJ, Fischer MA, Manoliu A, et al. Age- and gender dependent liver fat content in a healthy normal BMI population as quantified by fat–water separating DIXON MR imaging. PLoS One. 2015;10(11):e0141691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cassidy FH, Yokoo T, Aganovic L, et al. Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis. Radiographics. 2009;29(1):231–60.

    Article  PubMed  Google Scholar 

  31. Maden-Wilkinson TM, McPhee JS, Rittweger J, Jones DA, Degens H. Thigh muscle volume in relation to age, sex and femur volume. Age (Dordr). 2014;36(1):383–93.

    Article  CAS  Google Scholar 

  32. Kang JR, Gupta R. Mechanisms of fatty degeneration in massive rotator cuff tears. J Shoulder Elb Surg. 2012;21(2):175–80.

    Article  Google Scholar 

  33. Laron D, Samagh SP, Liu X, Kim HT, Feeley BT. Muscle degeneration in rotator cuff tears. J Shoulder Elb Surg. 2012;21(2):164–74.

    Article  Google Scholar 

  34. Mallon WJ, Wilson RJ, Basamania CJ. The association of suprascapular neuropathy with massive rotator cuff tears: a preliminary report. J Shoulder Elb Surg. 2006;15(4):395–8.

    Article  Google Scholar 

  35. Silldorff MD, Choo AD, Choi AJ, et al. Effect of supraspinatus tendon injury on supraspinatus and infraspinatus muscle passive tension and associated biochemistry. J Bone Joint Surg Am. 2014;96(20):e175.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Agten CA, Rosskopf AB, Gerber C, Pfirrmann CW. Quantification of early fatty infiltration of the rotator cuff muscles: comparison of multi-echo Dixon with single-voxel MR spectroscopy. Eur Radiol. 2016;26(10):3719–27.

    Article  PubMed  Google Scholar 

  37. Gerber C, Meyer DC, Schneeberger AG, Hoppeler H, von Rechenberg B. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep. J Bone Joint Surg Am. 2004;86-a(9):1973–82.

    Article  PubMed  CAS  Google Scholar 

  38. Meyer DC, Pirkl C, Pfirrmann CW, Zanetti M, Gerber C. Asymmetric atrophy of the supraspinatus muscle following tendon tear. J Orthop Res. 2005;23(2):254–8.

    Article  PubMed  Google Scholar 

  39. Melis B, Wall B, Walch G. Natural history of infraspinatus fatty infiltration in rotator cuff tears. J Shoulder Elb Surg. 2010;19(5):757–63.

    Article  Google Scholar 

  40. Shi LL, Boykin RE, Lin A, Warner JJ. Association of suprascapular neuropathy with rotator cuff tendon tears and fatty degeneration. J Shoulder Elb Surg. 2014;23(3):339–46.

    Article  Google Scholar 

  41. Barry JJ, Lansdown DA, Cheung S, Feeley BT, Ma CB. The relationship between tear severity, fatty infiltration, and muscle atrophy in the supraspinatus. J Shoulder Elb Surg. 2013;22(1):18–25.

    Article  Google Scholar 

  42. Zanetti M, Gerber C, Hodler J. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Investig Radiol. 1998;33(3):163–70.

    Article  CAS  Google Scholar 

  43. Raz Y, Henseler JF, Kolk A, et al. Patterns of age-associated degeneration differ in shoulder muscles. Front Aging Neurosci. 2015;7:236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Reimers CD, Harder T, Saxe H. Age-related muscle atrophy does not affect all muscles and can partly be compensated by physical activity: an ultrasound study. J Neurol Sci. 1998;159(1):60–6.

    Article  PubMed  CAS  Google Scholar 

  45. Fischer MA, Pfirrmann CW, Espinosa N, Raptis DA, Buck FM. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality. Eur Radiol. 2014;24(6):1366–75.

    Article  PubMed  Google Scholar 

  46. Fischmann A, Kaspar S, Reinhardt J, Gloor M, Stippich C, Fischer D. Exercise might bias skeletal-muscle fat fraction calculation from Dixon images. Neuromuscul Disord. 2012;22(Suppl 2):S107–10.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our physicists Dr. Daniel Nanz, PhD and Dr. Roger Luechinger, PhD, for their technical support, Dr. Dan Linh Nguyen, MD, for her indications concerning the analysis software, and our radiographers Nicole Aebi, Suzanne Potter, and Simone Suess for performing the MR exams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal S. Kälin.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflicts of interests to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Origin of work

Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Ramistrasse 100, 8091 Zurich, Switzerland

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kälin, P.S., Crawford, R.J., Marcon, M. et al. Shoulder muscle volume and fat content in healthy adult volunteers: quantification with DIXON MRI to determine the influence of demographics and handedness. Skeletal Radiol 47, 1393–1402 (2018). https://doi.org/10.1007/s00256-018-2945-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-018-2945-1

Keywords

Navigation