Skip to main content

Advertisement

Log in

T2 signal intensity as an imaging biomarker for patients with superficial Fibromatoses of the hands (Dupuytren’s disease) and feet (Ledderhose disease) undergoing definitive electron beam irradiation

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Electron beam therapy is a definitive radiation treatment option for superficial fibromatoses of the hands and feet. Because objective criteria for treatment response remain poorly defined, we sought to describe changes in electron beam treated lesions on MRI.

Materials and methods

The study included 1 male and 9 female patients with a total of 37 superficial fibromatoses; average age was 60.7 years. Standard 6 MeV electron beam treatment included 3 Gy per fraction for 10 or 12 treatments using split-course with 3-month halfway break. Pre- and post-treatment MRIs were evaluated to determine lesion size (cm3), T2 signal intensity and contrast enhancement (5-point ordinal scales) by a fellowship trained musculoskeletal radiologist. MRI findings were correlated with clinical response using a composite 1–5 ordinal scale, Karnofsky Performance Scale and patient-reported 10-point visual analog scale for pain.

Results

Mean volume decreased from 1.5 to 1.2 cm3 (p = 0.01, paired t-test). Mean T2 hyperintensity score decreased from 3.0 to 2.1 (p < 0.0001, Wilcoxon signed-rank). Mean enhancement score available for 22 lesions decreased from 3.8 to 3.0 (p < 0.0001, Wilcoxon signed-rank). Performance scores improved from 78.9 ± 13.7 to 84.6 ± 6.9 (p = 0.007, paired t-test). Pain scores decreased from 3.0 ± 3.3 to 1.1 ± 2.0 (p = 0.0001, paired t-test). Post-treatment T2 signal correlated weakly with performance and pain (Spearman’s ρ = −0.37 and 0.16, respectively).

Conclusions

MRI is valuable for evaluating patients undergoing electron beam therapy for superficial fibromatoses: higher pretreatment T2 intensity may predict benefit from radiotherapy. T2 hypointensity may be a better marker than size for therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bayat A, McGrouther DA. Management of Dupuytren’s disease: clear advice for an elusive condition. Ann R Coll Surg Engl. 2006;88(1):3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jo VY, Fletcher CDM. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology (Phila). 2014;46(2):95–104.

    CAS  Google Scholar 

  3. Murphey MD, Ruble CM, Tyszko SM, Zbojniewicz AM, Potter BK, Miettinen M. Musculoskeletal Fibromatoses: radiologic-pathologic correlation. Radiographics. 2009;29(7):2143–83.

    Article  PubMed  Google Scholar 

  4. Goldblum JR, Folpe AL, Weiss SW, Enzinger FM, Weiss SW. Enzinger and Weiss’s soft tissue tumors. 6th ed. Philadelphia: Saunders/Elsevier; 2014. 1155 pp

    Google Scholar 

  5. Murrell GA. The role of the fibroblast in Dupuytren’s contracture. Hand Clin. 1991;7(4):669–80. discussion 681

    CAS  PubMed  Google Scholar 

  6. Tomasek JJ, Vaughan MB, Haaksma CJ. Cellular structure and biology of Dupuytren’s disease. Hand Clin. 1999;15(1):21–34.

    CAS  PubMed  Google Scholar 

  7. Seegenschmiedt MH, Micke O, Niewald M, Mücke R, Eich HT, Kriz J, et al. DEGRO guidelines for the radiotherapy of non-malignant disorders : part III: hyperproliferative disorders. Strahlenther Onkol Organ Dtsch Rontgengesellschaft Al. 2015;191(7):541–8.

    Article  Google Scholar 

  8. Ball C, Izadi D, Verjee LS, Chan J, Nanchahal J. Systematic review of non-surgical treatments for early Dupuytren’s disease. BMC Musculoskelet Disord. 2016;17(1):345.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heyd R, Dorn AP, Herkströter M, Rödel C, Müller-Schimpfle M, Fraunholz I. Radiation therapy for early stages of morbus Ledderhose. Strahlenther Onkol Organ Dtsch Rontgengesellschaft Al. 2010;186(1):24–9.

    Article  Google Scholar 

  10. Zirbs M, Anzeneder T, Bruckbauer H, Hofmann H, Brockow K, Ring J, et al. Radiotherapy with soft X-rays in Dupuytren’s disease: successful, well-tolerated and satisfying. J Eur Acad Dermatol Venereol JEADV. 2015;29(5):904–11.

    Article  CAS  PubMed  Google Scholar 

  11. Rubin P, Soni A, Williams JP. The molecular and cellular biologic basis for the radiation treatment of benign proliferative diseases. Semin Radiat Oncol. 1999;9(2):203–14.

    Article  CAS  PubMed  Google Scholar 

  12. Seegenschmiedt MH, Adamietz B, editors. Radiotherapy for non-malignant disorders. Berlin: Springer; 2008. 743 p.

  13. Ball C, Pratt AL, Nanchahal J. Optimal functional outcome measures for assessing treatment for Dupuytren’s disease: a systematic review and recommendations for future practice. BMC Musculoskelet Disord. 2013;14:131.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Walker EA, Petscavage JM, Brian PL, Logie CI, Montini KM, Murphey MD. Imaging features of superficial and deep fibromatoses in the adult population. Sarcoma. 2012;2012:215810.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sheth PJ, Del Moral S, Wilky BA, Trent JC, Cohen J, Rosenberg AE, et al. Desmoid fibromatosis: MRI features of response to systemic therapy. Skelet Radiol. 2016;45(10):1365–73.

    Article  Google Scholar 

  16. Lee JC, Thomas JM, Phillips S, Fisher C, Moskovic E. Aggressive fibromatosis: MRI features with pathologic correlation. AJR Am J Roentgenol. 2006;186(1):247–54.

    Article  PubMed  Google Scholar 

  17. Murphey MD, Ruble CM, Tyszko SM, Zbojniewicz AM, Potter BK, Miettinen M. From the archives of the AFIP: musculoskeletal fibromatoses: radiologic-pathologic correlation. Radiogr Rev. 2009;29(7):2143–73.

    Google Scholar 

  18. Robbin MR, Murphey MD, Temple HT, Kransdorf MJ, Choi JJ. Imaging of musculoskeletal fibromatosis. Radiographics. 2001;21(3):585–600.

    Article  CAS  PubMed  Google Scholar 

  19. Evans JD. Straightforward statistics for the behavioral sciences. Pacific Grove: Brooks/Cole; 1996. 600 p.

  20. Ketchum LD. The rationale for treating the nodule in Dupuytren’s disease. Plast Reconstr Surg Glob Open. 2014;2(12):e278.

    Article  PubMed  Google Scholar 

  21. Badalamente MA, Hurst LC. Efficacy and safety of injectable mixed collagenase subtypes in the treatment of Dupuytren’s contracture. J Hand Surg. 2007;32(6):767–74.

    Article  Google Scholar 

  22. Denkler K. Surgical complications associated with fasciectomy for Dupuytren’s disease: a 20-year review of the English literature. Eplasty. 2010;10:e15.

    PubMed  PubMed Central  Google Scholar 

  23. Prosser R, Conolly WB. Complications following surgical treatment for Dupuytren’s contracture. J Hand Ther. 1996;9(4):344–8.

    Article  CAS  PubMed  Google Scholar 

  24. Fenney R. Dupuytren’s contracture a radiotherapeutic approach. Lancet Lond Engl. 1953;265(6795):1064–6.

    Article  CAS  Google Scholar 

  25. Seegenschmiedt MH, Olschewski T, Guntrum F. Radiotherapy optimization in early-stage Dupuytren’s contracture: first results of a randomized clinical study. Int J Radiat Oncol Biol Phys. 2001;49(3):785–98.

    Article  CAS  PubMed  Google Scholar 

  26. Montgomery E, Lee JH, Abraham SC, Wu TT. Superficial fibromatoses are genetically distinct from deep fibromatoses. Mod Pathol. 2001;14(7):695–701.

    Article  CAS  PubMed  Google Scholar 

  27. Dolmans GH, Werker PM, Hennies HC, Furniss D, Festen EA, Franke L, et al. Wnt signaling and Dupuytren’s disease. N Engl J Med. 2011;365(4):307–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No financial support was received by any author for the creation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Banks.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banks, J.S., Wolfson, A.H. & Subhawong, T.K. T2 signal intensity as an imaging biomarker for patients with superficial Fibromatoses of the hands (Dupuytren’s disease) and feet (Ledderhose disease) undergoing definitive electron beam irradiation. Skeletal Radiol 47, 243–251 (2018). https://doi.org/10.1007/s00256-017-2792-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2792-5

Keywords

Navigation