Skip to main content

Advertisement

Log in

Comparison of a fast 5-min knee MRI protocol with a standard knee MRI protocol: a multi-institutional multi-reader study

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare diagnostic performance of a 5-min knee MRI protocol to that of a standard knee MRI.

Materials and methods

One hundred 3 T (100 patients, mean 38.8 years) and 50 1.5 T (46 patients, mean 46.4 years) MRIs, consisting of 5 fast, 2D multi-planar fast-spin-echo (FSE) sequences and five standard multiplanar FSE sequences, from two academic centers (1/2015–1/2016), were retrospectively reviewed by four musculoskeletal radiologists. Agreement between fast and standard (interprotocol agreement) and between standard (intraprotocol agreement) readings for meniscal, ligamentous, chondral, and bone pathology was compared for interchangeability. Frequency of major findings, sensitivity, and specificity was also tested for each protocol.

Results

Interprotocol agreement using fast MRI was similar to intraprotocol agreement with standard MRI (83.0–99.5%), with no excess disagreement (≤ 1.2; 95% CI, −4.2 to 3.8%), across all structures. Frequency of major findings (1.1–22.4% across structures) on fast and standard MRI was not significantly different (p ≥ 0.215), except more ACL tears on fast MRI (p = 0.021) and more cartilage defects on standard MRI (p < 0.001). Sensitivities (59–100%) and specificities (73–99%) of fast and standard MRI were not significantly different for meniscal and ligament tears (95% CI for difference, −0.08–0.08). For cartilage defects, fast MRI was slightly less sensitive (95% CI for difference, −0.125 to −0.01) but slightly more specific (95% CI for difference, 0.01–0.5) than standard MRI.

Conclusion

A fast 5-min MRI protocol is interchangeable with and has similar accuracy to a standard knee MRI for evaluating internal derangement of the knee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oei EH, Nikken JJ, Verstijnen AC, Ginai AZ, Myriam Hunink MG. MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology. 2003;226(3):837–48.

    Article  PubMed  Google Scholar 

  2. Rangger C, Klestil T, Kathrein A, Inderster A, Hamid L. Influence of magnetic resonance imaging on indications for arthroscopy of the knee. Clin Orthop Relat Res. 1996;330:133–42.

    Article  Google Scholar 

  3. Cheung LP, Li KC, Hollett MD, Bergman AG, Herfkens RJ. Meniscal tears of the knee: accuracy of detection with fast spin-echo MR imaging and arthroscopic correlation in 293 patients. Radiology. 1997;203(2):508–12.

    Article  CAS  PubMed  Google Scholar 

  4. Mackenzie R, Palmer CR, Lomas DJ, Dixon AK. Magnetic resonance imaging of the knee: diagnostic performance studies. Clin Radiol. 1996;51(4):251–7.

    Article  CAS  PubMed  Google Scholar 

  5. Quatman CE, Hettrich CM, Schmitt LC, Spindler KP. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med. 2011;39(7):1557–68.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang M, Min Z, Rana N, Liu H. Accuracy of magnetic resonance imaging in grading knee chondral defects. Arthroscopy. 2013;29(2):349–56.

    Article  PubMed  Google Scholar 

  7. Harris JD, Brophy RH, Jia G, Price B, Knopp M, Siston RA, et al. Sensitivity of magnetic resonance imaging for detection of patellofemoral articular cartilage defects. Arthroscopy. 2012;28(11):1728–37.

    Article  PubMed  Google Scholar 

  8. Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I. Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy. 2007;23(3):312–5.

    Article  PubMed  Google Scholar 

  9. Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology. 2009;250(3):839–48.

    Article  PubMed  Google Scholar 

  10. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging. 2004;15(4):223–36.

    Article  PubMed  Google Scholar 

  11. Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a user’s guide. Radiographics. 2005;25(5):1279–97.

    Article  PubMed  Google Scholar 

  12. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap): a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.

    Article  PubMed  Google Scholar 

  13. De Smet AA, Tuite MJ. Use of the “two-slice-touch” rule for the MRI diagnosis of meniscal tears. AJR Am J Roentgenol. 2006;187(4):911–4.

    Article  PubMed  Google Scholar 

  14. Nguyen JC, De Smet AA, Graf BK, Rosas HG. MR imaging-based diagnosis and classification of meniscal tears. Radiographics. 2014;34(4):981–99.

    Article  PubMed  Google Scholar 

  15. Hong SH, Choi JY, Lee GK, Choi JA, Chung HW, Kang HS. Grading of anterior cruciate ligament injury: diagnostic efficacy of oblique coronal magnetic resonance imaging of the knee. J Comput Assist Tomogr. 2003;27(5):814–9.

    Article  PubMed  Google Scholar 

  16. Cosgarea AJ, Jay PR. Posterior cruciate ligament injuries: evaluation and management. J Am Acad Orthop Surg. 2001;9(5):297–307.

    Article  CAS  PubMed  Google Scholar 

  17. Wind WM Jr, Bergfeld JA, Parker RD. Evaluation and treatment of posterior cruciate ligament injuries: revisited. Am J Sports Med. 2004;32(7):1765–75.

    Article  PubMed  Google Scholar 

  18. Brittberg M, Peterson L. Introduction to an articular cartilage classification. ICRS Newsl. 1998;1:5–8.

    Google Scholar 

  19. Obuchowski NA, Subhas N, Schoenhagen P. Testing for interchangeability of imaging tests. Acad Radiol. 2014;21(11):1483–9.

    Article  PubMed  Google Scholar 

  20. Pruessmann KP, Weiger M, Boesiger P. Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson. 2001;3(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  21. Zech CJ, Herrmann KA, Huber A, Dietrich O, Stemmer A, Herzog P, et al. High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging. 2004;20(3):443–50.

    Article  PubMed  Google Scholar 

  22. Heidemann RM, Ozsarlak O, Parizel PM, Michiels J, Kiefer B, Jellus V, et al. A brief review of parallel magnetic resonance imaging. Eur Radiol. 2003;13(10):2323–37.

    Article  PubMed  Google Scholar 

  23. Kijowski R, Rosas H, Samsonov A, King K, Peters R, Liu F. Knee imaging: rapid three-dimensional fast spin-echo using compressed sensing. J Magn Reson Imaging. 2017;45:1712–22. https://doi.org/10.1002/jmri.25507.

  24. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.

    Article  PubMed  Google Scholar 

  25. Vasanawala SS, Alley MT, Hargreaves BA, Barth RA, Pauly JM, Lustig M. Improved pediatric MR imaging with compressed sensing. Radiology. 2010;256(2):607–16.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med. 2016;75(1):63–81.

    Article  PubMed  Google Scholar 

  27. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med. 2010;63(5):1144–53.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Feinberg DA, Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson. 2013;229:90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jaspan ON, Fleysher R, Lipton ML. Compressed sensing MRI: a review of the clinical literature. Br J Radiol. 2015;88(1056):20150487.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Takahashi M, Uematsu H, Hatabu H. MR imaging at high magnetic fields. Eur J Radiol. 2003;46(1):45–52.

    Article  PubMed  Google Scholar 

  31. Magee T, Shapiro M, Williams D. Usefulness of simultaneous acquisition of spatial harmonics technique for MRI of the knee. AJR Am J Roentgenol. 2004;182(6):1411–5.

    Article  PubMed  Google Scholar 

  32. Kreitner KF, Romaneehsen B, Krummenauer F, Oberholzer K, Muller LP, Duber C. Fast magnetic resonance imaging of the knee using a parallel acquisition technique (mSENSE): a prospective performance evaluation. Eur Radiol. 2006;16(8):1659–66.

    Article  PubMed  Google Scholar 

  33. Doria AS, Chaudry GA, Nasui C, Rayner T, Wang C, Moineddin R, et al. The use of parallel imaging for MRI assessment of knees in children and adolescents. Pediatr Radiol. 2010;40(3):284–93.

    Article  PubMed  Google Scholar 

  34. Pakin SK, Xu J, Schweitzer ME, Regatte RR. Rapid 3D-T1rho mapping of the knee joint at 3.0T with parallel imaging. Magn Reson Med. 2006;56(3):563–71.

    Article  PubMed  Google Scholar 

  35. Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging. 2007;26(4):1001–9.

    Article  PubMed  Google Scholar 

  36. Rubenstein JD, Li JG, Majumdar S, Henkelman RM. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol. 1997;169(4):1089–96.

    Article  CAS  PubMed  Google Scholar 

  37. Link TM, Majumdar S, Peterfy C, Daldrup HE, Uffmann M, Dowling C, et al. High resolution MRI of small joints: impact of spatial resolution on diagnostic performance and SNR. Magn Reson Imaging. 1998;16(2):147–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Subhas.

Ethics declarations

Conflict of interest

N.O: Siemens AG Research Consultant, Elucid Bioimaging Inc. (unrelated, no conflict for this research study), SG: Federal Grant, Agency for Healthcare Research and Quality (unrelated, no conflict for this research study), NS: Research Grant, Siemens AG (unrelated, no conflict for this research study). The remainder of the authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaia, E.F., Benedick, A., Obuchowski, N.A. et al. Comparison of a fast 5-min knee MRI protocol with a standard knee MRI protocol: a multi-institutional multi-reader study. Skeletal Radiol 47, 107–116 (2018). https://doi.org/10.1007/s00256-017-2780-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2780-9

Keywords

Navigation