Skip to main content

Advertisement

Log in

Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the osteoarthritis initiative

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate the association of cartilage degeneration with previous knee injuries not undergoing surgery, determined by morphologic and quantitative 3-T magnetic resonance imaging (MRI).

Materials and methods

We performed a nested cross-sectional study of right knee MRIs from participants in the Osteoarthritis Initiative (OAI) aged 45–79 with baseline Kellgren-Lawrence score of 0–2. Cases were 142 right knees of patients with self-reported history of injury limiting the ability to walk for at least 2 days. Controls were 426 right knees without history of injury, frequency-matched to cases on age, BMI, gender, KL scores and race (1:3 ratio). Cases and controls were compared using covariate-adjusted linear regression analysis, with the outcomes of region-specific T2 mean, laminar analysis and heterogeneity measured by texture analysis to investigate early cartilage matrix abnormalities and the Whole-Organ Magnetic Resonance Imaging Score (WORMS) to investigate morphologic knee lesions.

Results

Compared to control subjects, we found significantly higher mean T2 values in the injury [lateral tibia (28.10 ms vs. 29.11 ms, p = 0.001), medial tibia (29.70 ms vs. 30.40 ms, p = 0.014) and global knee cartilage (32.73 ms vs. 33.29 ms, p = 0.005)]. Injury subjects also had more heterogeneous cartilage as measured by GLCM texture contrast, variance and entropy (p < 0.05 in 14 out of 18 texture parameters). WORMS gradings were not significantly different between the two groups (p > 0.05).

Conclusion

A history of knee injury not treated surgically is associated with higher and more heterogeneous T2 values, but not with morphologic knee abnormalities. Our findings suggest that significant, conservatively treated knee injuries are associated with permanent cartilage matrix abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sharma L, Kapoor D, Issa S. Epidemiology of osteoarthritis: an update. Curr Opin Rheumatol. 2006; 18(2):147–156.

  2. Wise BL, Niu J, Yang M, Lane NE, Harvey W, Felson DT, et al. Patterns of compartment involvement in tibiofemoral osteoarthritis in men and women and in whites and African Americans. Arthritis Care Res (Hoboken). 2012;64(6):847–52.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gersing AS, Link TM. Imaging of osteoarthritis in geriatric patients. Curr Radiol Rep. 2016; 4(1).

  4. Vincent KR, Conrad BP, Fregly BJ, Vincent HK. The pathophysiology of osteoarthritis: a mechanical perspective on the knee joint. PM R. 2012;4(5 Suppl):S3–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthr Cartil. 2010;18(6):776–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Litwic A, Edwards MH, Dennison EM, Cooper C. Epidemiology and burden of osteoarthritis. Br Med Bull. 2013;105:185–99.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med. 2000;133(5):321–8.

    Article  CAS  PubMed  Google Scholar 

  8. Toivanen AT, Heliovaara M, Impivaara O, Arokoski JP, Knekt P, Lauren H, et al. Obesity, physically demanding work and traumatic knee injury are major risk factors for knee osteoarthritis—a population-based study with a follow-up of 22 years. Rheumatology (Oxford). 2010;49(2):308–14.

    Article  Google Scholar 

  9. Muthuri SG, McWilliams DF, Doherty M, Zhang W. History of knee injuries and knee osteoarthritis: a meta-analysis of observational studies. Osteoarthr Cartil. 2011;19(11):1286–93.

    Article  CAS  PubMed  Google Scholar 

  10. Hunter DJ, Zhang W, Conaghan PG, Hirko K, Menashe L, Reichmann WM, et al. Responsiveness and reliability of MRI in knee osteoarthritis: a meta-analysis of published evidence. Osteoarthr Cartil. 2011;19(5):589–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.

    Article  PubMed  Google Scholar 

  12. Liebl H, Joseph G, Nevitt MC, Singh N, Heilmeier U, Subburaj K, et al. Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis. 2015;74(7):1353–9.

    Article  PubMed  Google Scholar 

  13. Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthr Cartil. 2013;21(10):1474–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carballido-Gamio J, Joseph GB, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T2 knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative: a texture approach. Magn Reson Med. 2011;65(4):1184–94.

    Article  PubMed  Google Scholar 

  15. Haralick R. Statistical and structured approaches to texture. Proc IEEE. 1979;61(5):786–803.

    Article  Google Scholar 

  16. Yu A, Heilmeier U, Kretzschmar M, Joseph GB, Liu F, Liebl H, et al. Racial differences in biochemical knee cartilage composition between African-American and Caucasian-American women with 3 T MR-based T2 relaxation time measurements--data from the osteoarthritis initiative. Osteoarthr Cartil. 2015;23(9):1595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jungmann PM, Kraus MS, Alizai H, Nardo L, Baum T, Nevitt MC, et al. Association of metabolic risk factors with cartilage degradation assessed by T2 relaxation time at the knee: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). 2013;65(12):1942–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Driban JB, Eaton CB, Lo GH, Ward RJ, Lu B, McAlindon TE. Association of knee injuries with accelerated knee osteoarthritis progression: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). 2014;66(11):1673–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Driban JB, Lo GH, Eaton CB, Price LL, Lu B, McAlindon TE. Knee pain and a prior injury are associated with increased risk of a new knee injury: data from the osteoarthritis initiative. J Rheumatol. 2015;42(8):1463–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hennessy S, Bilker WB, Berlin JA, Strom BL. Factors influencing the optimal control-to-case ratio in matched case-control studies. Am J Epidemiol. 1999;149(2):195–7.

    Article  CAS  PubMed  Google Scholar 

  21. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2163–96.

    Article  PubMed  Google Scholar 

  22. Felson DT, Nevitt MC, Yang M, Clancy M, Niu J, Torner JC, et al. A new approach yields high rates of radiographic progression in knee osteoarthritis. J Rheumatol. 2008;35(10):2047–54.

    PubMed  PubMed Central  Google Scholar 

  23. Felson DT, Niu J, Guermazi A, Sack B, Aliabadi P. Defining radiographic incidence and progression of knee osteoarthritis: suggested modifications of the Kellgren and Lawrence scale. Ann Rheum Dis. 2011;70(11):1884–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil. 2008;16(12):1433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  26. Baum T, Joseph GB, Arulanandan A, Nardo L, Virayavanich W, Carballido-Gamio J, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). 2012;64(2):248–55.

    Article  Google Scholar 

  27. Kretzschmar M, Heilmeier U, Yu A, Joseph GB, Liu F, Solka M, et al. Longitudinal analysis of cartilage T2 relaxation times and joint degeneration in African American and Caucasian American women over an observation period of 6 years—data from the osteoarthritis initiative. Osteoarthr Cartil. 2016;24(8):1384–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwaiger BJ, Gersing AS, Mbapte Wamba J, Nevitt MC, McCulloch CE, Link TM. Can signal abnormalities detected with MR imaging in knee articular cartilage be used to predict development of morphologic cartilage defects? 48-month data from the osteoarthritis initiative. Radiology. 2016;281(1):158–67.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pan J, Stehling C, Muller-Hocker C, Schwaiger BJ, Lynch J, McCulloch CE, et al. Vastus lateralis/vastus medialis cross-sectional area ratio impacts presence and degree of knee joint abnormalities and cartilage T2 determined with 3T MRI—an analysis from the incidence cohort of the osteoarthritis initiative. Osteoarthr Cartil. 2011;19(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  30. Stehling C, Liebl H, Krug R, Lane NE, Nevitt MC, Lynch J, et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology. 2010;254(2):509–20.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Teichtahl AJ, Wluka AE, Tanamas SK, Wang Y, Strauss BJ, Proietto J, et al. Weight change and change in tibial cartilage volume and symptoms in obese adults. Ann Rheum Dis. 2015;74(6):1024–9.

    Article  CAS  PubMed  Google Scholar 

  32. Honkonen SE. Degenerative arthritis after tibial plateau fractures. J Orthop Trauma. 1995;9(4):273–7.

    Article  CAS  PubMed  Google Scholar 

  33. Joseph GB, McCulloch CE, Nevitt MC, Heilmeier U, Nardo L, Lynch JA, et al. A reference database of cartilage 3 T MRI T2 values in knees without diagnostic evidence of cartilage degeneration: data from the osteoarthritis initiative. Osteoarthr Cartil. 2015;23(6):897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wise BL, Niu J, Guermazi A, Liu F, Heilmeier U, Ku E, et al. Magnetic resonance imaging lesions are more severe and cartilage T2 relaxation time measurements are higher in isolated lateral compartment radiographic knee osteoarthritis than in isolated medial compartment disease—data from the osteoarthritis initiative. Osteoarthr Cartil. 2016;

  35. Raya JG, Dietrich O, Horng A, Weber J, Reiser MF, Glaser C. T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR. Magn Reson Med. 2010;63(1):181–93.

    PubMed  Google Scholar 

  36. Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14(1):50–5.

    Article  PubMed  Google Scholar 

  37. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging. 2003;17(3):358–64.

    Article  PubMed  Google Scholar 

  38. Carballido-Gamio J, Blumenkrantz G, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T(2) knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative. Magn Reson Med. 2010;63(2):465–72.

    Article  PubMed  Google Scholar 

  39. Haralick R, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst, Man, Cybernet. 1973;SMC-1:610–8.

    Article  Google Scholar 

  40. Blumenkrantz G, Stahl R, Carballido-Gamio J, Zhao S, Lu Y, Munoz T, et al. The feasibility of characterizing the spatial distribution of cartilage T(2) using texture analysis. Osteoarthr Cartil. 2008;16(5):584–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carballido-Gamio J, Joseph GB, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T(2) knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative: a texture approach. Magn Reson Med. 2010;

  42. Bucknor MD, Nardo L, Joseph GB, Alizai H, Srikhum W, Nevitt MC, et al. Association of cartilage degeneration with four year weight gain—3T MRI data from the osteoarthritis initiative. Osteoarthr Cartil. 2015;23(4):525–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stehling C, Baum T, Mueller-Hoecker C, Liebl H, Carballido-Gamio J, Joseph GB, et al. A novel fast knee cartilage segmentation technique for T2 measurements at MR imaging—data from the osteoarthritis initiative. Osteoarthr Cartil. 2011;19(8):984–9.

    Article  CAS  PubMed  Google Scholar 

  44. Pearce N. Analysis of matched case-control studies. BMJ. 2016;352:i969.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liess C, Lusse S, Karger N, Heller M, Gluer CC. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil. 2002;10(12):907–13.

    Article  CAS  PubMed  Google Scholar 

  46. Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics. 2011;31(1):37–61.

    Article  PubMed  Google Scholar 

  47. Li X, Pai A, Blumenkrantz G, Carballido-Gamio J, Link T, Ma B, et al. Spatial distribution and relationship of T1rho and T2 relaxation times in knee cartilage with osteoarthritis. Magn Reson Med. 2009;61(6):1310–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carballido-Gamio J, Stahl R, Blumenkrantz G, Romero A, Majumdar S, Link TM. Spatial analysis of magnetic resonance T1rho and T2 relaxation times improves classification between subjects with and without osteoarthritis. Med Phys. 2009;36(9):4059–67.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eagle S, Potter HG, Koff MF. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis. J Orthop Res. 2016;

  50. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000;133(8):635–46.

    Article  CAS  PubMed  Google Scholar 

  51. Buckwalter JA, Lane NE. Athletics and osteoarthritis. Am J Sports Med. 1997;25(6):873–81.

    Article  CAS  PubMed  Google Scholar 

  52. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.

    CAS  PubMed  Google Scholar 

  53. Gale DR, Chaisson CE, Totterman SM, Schwartz RK, Gale ME, Felson D. Meniscal subluxation: association with osteoarthritis and joint space narrowing. Osteoarthr Cartil. 1999;7(6):526–32.

    Article  CAS  PubMed  Google Scholar 

  54. Johnson VL. Guermazi A. Hunter DJ. Comparison in knee osteoarthritis joint damage patterns among individuals with an intact, complete and partial anterior cruciate ligament rupture. Int J Rheum Dis: Roemer FW; 2016.

    Google Scholar 

  55. Su F, Hilton JF, Nardo L, Wu S, Liang F, Link TM, et al. Cartilage morphology and T1rho and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. Osteoarthr Cartil. 2013;21(8):1058–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wirth W, Maschek S, Roemer FW, Eckstein F. Layer-specific femorotibial cartilage T2 relaxation time in knees with and without early knee osteoarthritis: data from the osteoarthritis initiative (OAI). Sci Rep. 2016;6:34202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Potter HG, Jain SK, Ma Y, Black BR, Fung S, Lyman S. Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med. 2012;40(2):276–85.

    Article  PubMed  Google Scholar 

  58. Houard X, Goldring MB, Berenbaum F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep. 2013;15(11):375.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Filardo G, Kon E, Longo UG, Madry H, Marchettini P, Marmotti A, et al. Non-surgical treatments for the management of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016;24(6):1775–85.

    Article  PubMed  Google Scholar 

  60. Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int. 2013;2013:284873.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was performed with support by the OAI, which is a public-private partnership comprising five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, which constitutes a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. The private funding partners involved are Novartis Pharmaceuticals Corp.; Pfizer, Inc.; Merck Research Laboratories; and GlaxoSmithKline. The private sector funding for the OAI is administered by the Foundation for the National Institutes of Health. Analyses in this study were also funded through grants awarded by the NIH NIAMS (National Institute of Arthritis and Musculoskeletal and Skin Diseases) grants R01AR064771 and P50-AR060752).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felix C. Hofmann or Thomas M. Link.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The OAI study is HIPAA compliant and approved by the institutional review boards at each clinical site. All study participants signed informed consent forms prior to enrollment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, F.C., Neumann, J., Heilmeier, U. et al. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the osteoarthritis initiative. Skeletal Radiol 47, 93–106 (2018). https://doi.org/10.1007/s00256-017-2759-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2759-6

Keywords

Navigation