Skip to main content

Advertisement

Log in

Prospective pilot study of CT-guided microwave ablation in the treatment of osteoid osteomas

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

The aims of this work were to assess the feasibility and efficacy of CT-guided microwave ablation (MWA) in the treatment of osteoid osteomas (OOs).

Materials and methods

Thirteen consecutive patients (range 11–31 years old) presenting with OO were prospectively included and treated by CT-guided MWA. Power and duration of MWA were both recorded. The patient’s pain was assessed using a numeric pain rating scale (NRS), and side effects were recorded during procedures, after 1 day, 7 days and 1 month. The nidus vascularization and the volume of necrosis induced by MWA were assessed using contrast-enhanced MRI. Success was defined as the complete relief of the patient’s pain 1 month after the first procedure, associated with necrosis of the nidus on follow-up MRI.

Results

The success rate was up to 92.3% (12/13). At 1 day, 7 days and 1 month, the median NRSs were respectively 5 [interquartile range (IQR) 2–5], 0 (IQR 0–1) and 0 (IQR 0–0). Side effects observed were one partial and self-resolving lesion of a sensory branch of the radial nerve and two skin burns. The median power of the MWA used was 60 W (IQR 50–60) with a 1.5-min duration (IQR 1–2), leading to MWA-induced necrosis measuring on average 23 × 15 × 16 mm.

Conclusion

CT-guided MWA of OO has a success rate that appears to be almost similar to that of laser or radiofrequency ablation, but care must be taken to prevent nerve or skin lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dahlin DC, Unni KK. Bone tumors: general aspects and data on 8,542 cases. Springfield: Charles C Thomas Pub Ltd; 1986. p. 88–101.

    Google Scholar 

  2. Greco F, Tamburrelli F, Ciabattoni G. Prostaglandins in osteoid osteoma. Int Orthop. 1991;15(1):35–7.

    Article  CAS  PubMed  Google Scholar 

  3. Filippiadis DK, Tutton S, Mazioti A, Kelekis A. Percutaneous image-guided ablation of bone and soft tissue tumours: a review of available techniques and protective measures. Insights Imaging. 2014;5(3):339–46.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moser T, Buy X, Goyault G, Tok CH, Irani F, Gangi A. Image-guided ablation of bone tumors: review of current techniques. J Radiol. 2008;89(4):461–71.

    Article  CAS  PubMed  Google Scholar 

  5. Lindner NJ, Ozaki T, Roedl R, Gosheger G, Winkelmann W, Wörtler K. Percutaneous radiofrequency ablation in osteoid osteoma. J Bone Joint Surg (Br). 2001;83(3):391–6.

    Article  CAS  Google Scholar 

  6. Vanderschueren GM, Taminiau AHM, Obermann WR, Bloem JL. Osteoid osteoma: clinical results with thermocoagulation. Radiology. 2002;224(1):82–6.

    Article  PubMed  Google Scholar 

  7. Rosenthal DI, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ. Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology. 2003;229(1):171–5.

    Article  PubMed  Google Scholar 

  8. Woertler K, Vestring T, Boettner F, Winkelmann W, Heindel W, Lindner N. Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol. 2001;12(6):717–22.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenthal DI, Springfield DS, Gebhardt MC, Rosenberg AE, Mankin HJ. Osteoid osteoma: percutaneous radio-frequency ablation. Radiology. 1995;197(2):451–4.

    Article  CAS  PubMed  Google Scholar 

  10. Kjar RA, Powell GJ, Schilcht SM, Smith PJ. Percutaneous radiofrequency ablation for osteoid osteoma: experience with a new treatment. Med J Aust. 2006;184(11):563–5.

    PubMed  Google Scholar 

  11. Rehnitz C, Sprengel SD, Lehner B, et al. CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and long-term follow up in 77 patients. Eur J Radiol. 2012;81(11):3426–34.

    Article  PubMed  Google Scholar 

  12. Pinto CH, Taminiau AHM, Vanderschueren GM, Hogendoorn PCW, Bloem JL, Obermann WR. Technical considerations in CT-guided radiofrequency thermal ablation of osteoid osteoma: tricks of the trade. AJR Am J Roentgenol. 2002;179(6):1633–42.

    Article  PubMed  Google Scholar 

  13. de Baere T. New techniques of tumor ablation (microwaves, electroporation). J Radiol. 2011;92(9):789–95.

    Article  PubMed  Google Scholar 

  14. Brace CL. Microwave ablation technology: what every user should know. Curr Probl Diagn Radiol. 2009;38(2):61–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu J, Liang P, Yu X-L, et al. US-guided percutaneous microwave ablation of renal cell carcinoma: intermediate-term results. Radiology. 2012;263(3):900–8.

    Article  PubMed  Google Scholar 

  16. Durick NA, Laeseke PF, Broderick LS, et al. Microwave ablation with triaxial antennas tuned for lung: results in an in vivo porcine model. Radiology. 2008;247(1):80–7.

    Article  PubMed  Google Scholar 

  17. Kostrzewa M, Diezler P, Michaely H, et al. Microwave ablation of osteoid osteomas using dynamic MR imaging for early treatment assessment: preliminary experience. J Vasc Interv Radiol. 2014;25(1):106–11.

    Article  PubMed  Google Scholar 

  18. Basile A, Failla G, Reforgiato A, et al. The use of microwaves ablation in the treatment of epiphyseal osteoid osteomas. Cardiovasc Intervent Radiol. 2014;37(3):737–42.

    Article  PubMed  Google Scholar 

  19. Kastler A, Alnassan H, Aubry S, Kastler B. Microwave thermal ablation of spinal metastatic bone tumors. J Vasc Interv Radiol. 2014;25(9):1470–5.

    Article  PubMed  Google Scholar 

  20. Sacks D, McClenny TE, Cardella JF, Lewis CA. Society of interventional radiology clinical practice guidelines. J Vasc Interv Radiol. 2003;14(9 pt 2):S199–202.

    Article  PubMed  Google Scholar 

  21. Kattapuram SV, Kushner DC, Phillips WC, Rosenthal DI. Osteoid osteoma: an unusual cause of articular pain. Radiology. 1983;147(2):383–7.

    Article  CAS  PubMed  Google Scholar 

  22. Glanzmann MC, Imhoff AB, Schwyzer H-K. Osteoid osteoma of the shoulder and elbow: from diagnosis to minimally invasive removal. Int Orthop. 2013;37(12):2403–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kneisl JS, Simon MA. Medical management compared with operative treatment for osteoid-osteoma. J Bone Joint Surg Am. 1992;74(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenthal DI, Alexander A, Rosenberg AE, Springfield D. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology. 1992;183(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  25. Rosenthal D, Callstrom MR. Critical review and state of the art in interventional oncology: benign and metastatic disease involving bone. Radiology. 2012;262(3):765–80.

    Article  PubMed  Google Scholar 

  26. Donkol RH, Al-Nammi A, Moghazi K. Efficacy of percutaneous radiofrequency ablation of osteoid osteoma in children. Pediatr Radiol. 2008;38(2):180–5.

    Article  PubMed  Google Scholar 

  27. Pusceddu C, Sotgia B, Fele RM, Melis L. Treatment of bone metastases with microwave thermal ablation. J Vasc Interv Radiol. 2013;24(2):229–33.

    Article  PubMed  Google Scholar 

  28. Yang X, Ye X, Zheng A, et al. Percutaneous microwave ablation of stage I medically inoperable non-small cell lung cancer: clinical evaluation of 47 cases. J Surg Oncol. 2014;110(6):758–63.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Miyazaki M, Arai Y, Myoui A, et al. Phase I/II multi-institutional study of percutaneous radiofrequency ablation for painful osteoid osteoma (JIVROSG-0704). Cardiovasc Intervent Radiol. 2016;39(10):1464–70.

    Article  PubMed  Google Scholar 

  30. Abboud S, Kosmas C, Novak R, Robbin M. Long-term clinical outcomes of dual-cycle radiofrequency ablation technique for treatment of osteoid osteoma. Skelet Radiol. 2016;45(5):599–606.

    Article  Google Scholar 

  31. Maybody M, Tang PQ, Moskowitz CS, Hsu M, Yarmohammadi H, Boas FE. Pneumodissection for skin protection in image-guided cryoablation of superficial musculoskeletal tumours. Eur Radiol. 2016. doi:10.1007/s00330-016-4456-6.

    Google Scholar 

  32. Lee SJ, Choyke LT, Locklin JK, Wood BJ. Use of hydrodissection to prevent nerve and muscular damage during radiofrequency ablation of kidney tumors. J Vasc Interv Radiol. 2006;17(12):1967–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moreland AJ, Lubner MG, Ziemlewicz TJ, et al. Evaluation of a thermoprotective gel for hydrodissection during percutaneous microwave ablation: in vivo results. Cardiovasc Intervent Radiol. 2015;38(3):722–30.

    Article  PubMed  Google Scholar 

  34. Gangi A, Alizadeh H, Wong L, Buy X, Dietemann J-L, Roy C. Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology. 2007;242(1):293–301.

    Article  PubMed  Google Scholar 

  35. Deschamps F, Farouil G, de Baere T. Percutaneous ablation of bone tumors. Diagn Interv Imaging. 2014;95(7–8):659–63.

    Article  CAS  PubMed  Google Scholar 

  36. Okuma T, Matsuoka T, Yamamoto A, Hamamoto S, Nakamura K, Inoue Y. Assessment of early treatment response after CT-guided radiofrequency ablation of unresectable lung tumours by diffusion-weighted MRI: a pilot study. Br J Radiol. 2009;82(984):989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vanderschueren GM, Taminiau AHM, Obermann WR, van den Berg-Huysmans AA, Bloem JL. Osteoid osteoma: factors for increased risk of unsuccessful thermal coagulation. Radiology. 2004;233(3):757–62.

    Article  PubMed  Google Scholar 

  38. He N, Wang W, Ji Z, Li C, Huang B. Microwave ablation: an experimental comparative study on internally cooled antenna versus non-internally cooled antenna in liver models. Acad Radiol. 2010;17(7):894–9.

    Article  PubMed  Google Scholar 

  39. Witt JD, Hall-Craggs MA, Ripley P, Cobb JP, Bown SG. Interstitial laser photocoagulation for the treatment of osteoid osteoma. J Bone Joint Surg (Br). 2000;82(8):1125–8.

    Article  CAS  Google Scholar 

  40. Dasenbrock HH, Gandhi D, Kathuria S. Percutaneous plasma mediated radiofrequency ablation of spinal osteoid osteomas. J Neurointerv Surg. 2012;4(3):226–8.

    Article  PubMed  Google Scholar 

  41. Eshet Y, Mann RR, Anaton A, Yacoby T, Gefen A, Jerby E. Microwave drilling of bones. IEEE Trans Biomed Eng. 2006;53(6):1174–82.

    Article  PubMed  Google Scholar 

  42. Carrafiello G, Laganà D, Mangini M, et al. Microwave tumors ablation: principles, clinical applications and review of preliminary experiences. Int J Surg. 2008;6:S65–9.

    Article  PubMed  Google Scholar 

  43. Goldberg SN, Grassi CJ, Cardella JF, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology. 2005;235(3):728–39.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cha CH, Lee FT, Gurney JM, et al. CT versus sonography for monitoring radiofrequency ablation in a porcine liver. AJR Am J Roentgenol. 2000;175(3):705–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Aubry.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prud’homme, C., Nueffer, JP., Runge, M. et al. Prospective pilot study of CT-guided microwave ablation in the treatment of osteoid osteomas. Skeletal Radiol 46, 315–323 (2017). https://doi.org/10.1007/s00256-016-2558-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-016-2558-5

Keywords

Navigation