Skip to main content
Log in

In vitro chondrocyte toxicity following long-term, high-dose exposure to Gd-DTPA and a novel cartilage-targeted MR contrast agent

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the concentrations exhibiting toxicity of a cartilage-targeted magnetic resonance imaging contrast agent compared with gadopentetate dimeglumine (Gd-DT-PA) in chondrocyte cultures.

Materials and methods

A long-term Swarm rat chondrosarcoma chondrocyte-like cell line was exposed for 48 h to 1.0–20 mM concentrations of diaminobutyl-linked nitroxide (DAB4-DLN) citrate, 1.0–20 mM Gd-DTPA, 1.0 μM staurosporine (positive control), or left untreated. Cell appearance, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays of metabolic activity, quantitative PicoGreen assays of DNA content, and calcein-AM viability assays were compared.

Results

At 1.0–7.5 mM, minimal decrease in cell proliferation was found for both agents. At all doses of both agents, cell culture appearances were similar after 24 h of treatment. At the higher doses, differences in cell culture appearance were found after 48 h of treatment, with dose-dependent declines in chondrocyte populations for both agents. Concentration-dependent declines in DNA content and calcein fluorescence were found after 48 h of treatment, but beginning at a lower dose of DAB4-DLN citrate than Gd-DTPA. Dose-dependent decreases in MTT staining (cell metabolism) were apparent for both agents, but larger effects were evident at a lower dose for DAB-DLN citrate. Poor MTT staining of cells exposed for 48 h to 20 mM DAB4-DLN citrate probably indicates dead or dying cells.

Conclusion

The minimal effect of the long-term exposure of model chondrocyte cell cultures to DAB4-DLN citrate and Gd-DTPA concentrations up to 7.5 mM (3x typical arthrographic administration) is supporting evidence that these doses are acceptable for MR arthrography. The findings are reassuring given that the experimental exposure to the contrast agents at sustained concentrations was much longer than when used clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Winalski CS, Aliabadi P, Wright RJ, Shortkroff S, Sledge CB, Weissman BN. Enhancement of joint fluid with intravenously administered gadopentetate dimeglumine: technique, rationale, and implications. Radiology. 1993;187(1):179–85.

    Article  CAS  PubMed  Google Scholar 

  2. Agten CA, Sutter R, Buck FM, Pfirrmann CW. Hip imaging in athletes: sports imaging series. Radiology. 2016;280(2):351–69.

    Article  PubMed  Google Scholar 

  3. Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology. 1997;205(2):551–8.

    Article  CAS  PubMed  Google Scholar 

  4. Gold GE, Burstein D, Dardzinski B, Lang P, Boada F, Mosher T, et al. MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers. Osteoarthritis Cartilage. 2006;14(Suppl A):A76–86.

    Article  PubMed  Google Scholar 

  5. LiMarzi GM, O’Dell MC, Scherer K, Pettis C, Wasyliw CW, Bancroft LW. Magnetic resonance arthrography of the wrist and elbow. Magn Reson Imaging Clin N Am. 2015;23(3):441–55.

    Article  PubMed  Google Scholar 

  6. Naraghi A, White LM. MRI of labral and chondral lesions of the hip. AJR Am J Roentgenol. 2015;205(3):479–90.

    Article  PubMed  Google Scholar 

  7. Sebro R, Oliveira A, Palmer WE. MR arthrography of the shoulder: technical update and clinical applications. Semin Musculoskelet Radiol. 2014;18(4):352–64.

    Article  PubMed  Google Scholar 

  8. Chundru U, Riley GM, Steinbach LS. Magnetic resonance arthrography. Radiol Clin N Am. 2009;47(3):471–94.

    Article  PubMed  Google Scholar 

  9. Kalke RJ, Di Primio GA, Schweitzer ME. MR and CT arthrography of the knee. Semin Musculoskelet Radiol. 2012;16(1):57–68.

    Article  PubMed  Google Scholar 

  10. Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–73.

    Article  CAS  PubMed  Google Scholar 

  11. Maroudas A, Evans H. A study of ionic equilibria in cartilage. Connect Tissue Res. 1972;1(1):69–77.

    Article  CAS  Google Scholar 

  12. Broderick JM, Baker JF, Walsh P, Mulhall KJ. In vitro assessment of primary human chondrocyte viability following treatment with intra-articular contrast media and local anaesthetic. 4th Annual Scientific Meeting of the International Society of Hip Arthroscopy. Boston, MA. 2012.

  13. Cravino M, Marmotti A, Castoldi F, Rossi R, Giacalone F. Monolayer culture’s behaviour of articular chondrocytes and sinoviocytes to the gadolinium exposure. Minerva Ortop Traumatol. 2008;59(2):99–107.

    Google Scholar 

  14. Greisberg JK, Wolf JM, Wyman J, Zou L, Terek RM. Gadolinium inhibits thymidine incorporation and induces apoptosis in chondrocytes. J Orthop Res. 2001;19(5):797–801.

    Article  CAS  PubMed  Google Scholar 

  15. Midura S, Schneider E, Sakamoto FA, Rosen GM, Winalski CS, Midura RJ. In vitro toxicity in long-term cell culture of MR contrast agents targeted to cartilage evaluation. Osteoarthritis Cartilage. 2014;22(9):1337–45.

    Article  CAS  PubMed  Google Scholar 

  16. Baker JF, Mulhall KJ. Local anaesthetics and chondrotoxicity: what is the evidence? Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2294–301.

    Article  PubMed  Google Scholar 

  17. Gomoll AH, Yanke AB, Kang RW, Chubinskaya S, Williams JM, Bach BR, et al. Long-term effects of bupivacaine on cartilage in a rabbit shoulder model. Am J Sports Med. 2009;37(1):72–7.

    Article  PubMed  Google Scholar 

  18. Seshadri V, Coyle CH, Chu CR. Lidocaine potentiates the chondrotoxicity of methylprednisolone. Arthroscopy. 2009;25(4):337–47.

    Article  PubMed  Google Scholar 

  19. Grobner T. Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lin SP, Brown JJ. MR contrast agents: physical and pharmacologic basics. J Magn Reson Imaging. 2007;25(5):884–99.

    Article  PubMed  Google Scholar 

  21. Wertman R, Altun E, Martin DR, Mitchell DG, Leyendecker JR, O’Malley RB, et al. Risk of nephrogenic systemic fibrosis: evaluation of gadolinium chelate contrast agents at four American universities. Radiology. 2008;248(3):799–806.

    Article  PubMed  Google Scholar 

  22. Marckmann P. An epidemic outbreak of nephrogenic systemic fibrosis in a Danish hospital. Eur J Radiol. 2008;66(2):187–90.

    Article  PubMed  Google Scholar 

  23. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275(3):772–82.

    Article  PubMed  Google Scholar 

  24. Winalski CS, Shortkroff S, Mulkern RV, Schneider E, Rosen GM. Magnetic resonance relaxivity of dendrimer-linked nitroxides. Magn Reson Med. 2002;48(6):965–72.

    Article  CAS  PubMed  Google Scholar 

  25. Winalski CS, Shortkroff S, Schneider E, Yoshioka H, Mulkern RV, Rosen GM. Targeted dendrimer-based contrast agents for articular cartilage assessment by MR imaging. Osteoarthritis Cartilage. 2008;16(7):815–22.

    Article  CAS  PubMed  Google Scholar 

  26. King KB, Kimura JH. The establishment and characterization of an immortal cell line with a stable chondrocytic phenotype. J Cell Biochem. 2003;89(5):992–1004.

    Article  CAS  PubMed  Google Scholar 

  27. ISS 2015 Annual meeting Maui, HI: Scientific paper presentations. Skeletal Radiol. 2016;45(6):857–864.

  28. Mukhopadhyay K, Lefebvre V, Zhou G, Garofalo S, Kimura JH, de Crombrugghe B. Use of a new rat chondrosarcoma cell line to delineate a 119-base pair chondrocyte-specific enhancer element and to define active promoter segments in the mouse pro-alpha 1(II) collagen gene. J Biol Chem. 1995;270(46):27711–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bosman AW, Janssen RAJ, Miejer EW. Five generations of nitroxyl-functionalized dendrimers. Macromolecules. 1997;30(12):3606–11.

    Article  CAS  Google Scholar 

  30. Sgouras D, Duncan R. Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1? Use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity. J Mater Sci Mater Med. 1990;1(2):61–8.

    Article  CAS  Google Scholar 

  31. Braun HJ, Wilcox-Fogel N, Kim HJ, Pouliot MA, Harris AH, Dragoo JL. The effect of local anesthetic and corticosteroid combinations on chondrocyte viability. Knee Surg Sports Traumatol Arthrosc. 2012;20(9):1689–95.

    Article  PubMed  Google Scholar 

  32. MacMahon PJ, Eustace SJ, Kavanagh EC. Injectable corticosteroid and local anesthetic preparations: a review for radiologists. Radiology. 2009;252(3):647–61.

    Article  PubMed  Google Scholar 

  33. Piper SL, Kramer JD, Kim HT, Feeley BT. Effects of local anesthetics on articular cartilage. Am J Sports Med. 2011;39(10):2245–53.

    Article  PubMed  Google Scholar 

  34. Rao AJ, Johnston TR, Harris AH, Smith RL, Costouros JG. Inhibition of chondrocyte and synovial cell death after exposure to commonly used anesthetics: chondrocyte apoptosis after anesthetics. Am J Sports Med. 2014;42(1):50–8.

    Article  PubMed  Google Scholar 

  35. Chu CR, Coyle CH, Chu CT, Szczodry M, Seshadri V, Karpie JC, et al. In vivo effects of single intra-articular injection of 0.5% bupivacaine on articular cartilage. J Bone Joint Surg Am. 2010;92(3):599–608.

    Article  PubMed  Google Scholar 

  36. Chu CR, Izzo NJ, Papas NE, Fu FH. In vitro exposure to 0.5% bupivacaine is cytotoxic to bovine articular chondrocytes. Arthroscopy. 2006;22(7):693–9.

    Article  PubMed  Google Scholar 

  37. Caron MM, Emans PJ, Coolsen MM, Voss L, Surtel DA, Cremers A, et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage. 2012;20(10):1170–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kopka L, Funke M, Fischer U, Keating D, Oestmann J, Grabbe E. MR arthrography of the shoulder with gadopentetate dimeglumine: influence of concentration, iodinated contrast material, and time on signal intensity. AJR Am J Roentgenol. 1994;163(3):621–3.

    Article  CAS  PubMed  Google Scholar 

  39. Masi JN, Newitt D, Sell CA, Daldrup-Link H, Steinbach L, Majumdar S, et al. Optimization of gadodiamide concentration for MR arthrography at 3 T. AJR Am J Roentgenol. 2005;184(6):1754–61.

    Article  PubMed  Google Scholar 

  40. Bozyczko-Coyne D, McKenna BW, Connors TJ, Neff NT. A rapid fluorometric assay to measure neuronal survival in vitro. J Neurosci Methods. 1993;50(2):205–16.

    Article  CAS  PubMed  Google Scholar 

  41. Rahmouni A, Mathieu D, Chambon C, Dao TH, Hernigou P, Vasile N. Intraarticular tolerability and kinetics of gadolinium tetra-azacyclododecane tetraacetic acid. Acad Radiol. 1995;2(5):413–7.

    Article  CAS  PubMed  Google Scholar 

  42. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213(3):626–34.

    Article  CAS  PubMed  Google Scholar 

  43. Engel A. Magnetic resonance knee arthrography. Enhanced contrast by gadolinium complex in the rabbit and in humans. Acta Orthop Scand Suppl. 1990;240:1–57.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl S. Winalski.

Ethics declarations

Conflicts of interest

E. Schneider and G. Rosen are minority shareholders of NitroSci Pharmaceuticals, LLC. E. Schneider is the Secretary/Treasurer and G. Rosen the Vice-President of NitroSci Pharmaceuticals, LLC, with no monetary compensation. NitroSci is the patent holder for the dendrimer-linked nitroxide contrast agents. C. Winalski has a family member who is a minority shareholder and officer of NitroSci Pharmaceuticals, LLC.

Funding

This work had no external funding source.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midura, S., Schneider, E., Rosen, G.M. et al. In vitro chondrocyte toxicity following long-term, high-dose exposure to Gd-DTPA and a novel cartilage-targeted MR contrast agent. Skeletal Radiol 46, 23–33 (2017). https://doi.org/10.1007/s00256-016-2502-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-016-2502-8

Keywords

Navigation