Skip to main content
Log in

Multi-parametric MR imaging of quadriceps musculature in the setting of clinical frailty syndrome

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Frailty is a common geriatric syndrome associated with loss of skeletal muscle mass (sarcopenia) conferring an increased risk of rapid decline in health and function with increased vulnerability to adverse outcomes. The purpose of this study was to investigate the correlation between diffusion tensor, T2 and intramuscular fat content values of the quadriceps muscle group and clinical frailty status using diffusion tensor MR imaging.

Material and Methods

Subjects were recruited from the Arizona Frailty cohort composed of all females with frailty status based on the Fried criteria, including 6 non-frail and 10 pre-frail/frail adults, as well as a community sample of 11 young, healthy controls. Axial images of both thighs were obtained on a 3-T magnet with T1, T2 and diffusion tensor imaging as well as intramuscular fat analysis. Diffusion tensor and T2 values were determined by region-of-interest measurements at the proximal, mid and distal thirds of both thighs. Data were evaluated to determine differences between measured values and frailty status.

Results

The mean fractional anisotropy (FA) values in the bilateral quadriceps muscles demonstrated significant differences (F = 7.558, p = 0.0030) between the control and pre-frail/frail and non-frail and pre-frail/frail groups. There was a significant difference in mean T2 (F = 21.675, p < 0.0001) and lipid content (F = 19.266, p < 0.0001) among all three groups in the total quadriceps muscle group.

Conclusion

The quadriceps musculature of pre-frail/frail adults demonstrated increased FA compared to young controls and non-frail adults with increasing T2 and intramuscular fat among the control, non-frail and pre-frail/frail categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bagshaw SM, McDermid RC. The role of frailty in outcomes from critical illness. Curr Opin Crit Care. 2013;19(5):496–503.

    Article  PubMed  Google Scholar 

  2. Boyd CM, Xue QL, Simpson CF, Guralnik JM, Fried LP. Frailty, hospitalization, and progression of disability in a cohort of disabled older women. Am J Med. 2005;118(11):1225–31.

    Article  PubMed  Google Scholar 

  3. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol Ser A Biol Med Sci. 2001;56(3):M146–156.

    Article  CAS  Google Scholar 

  4. Kelaiditi E, van Kan GA, Cesari M. Frailty: role of nutrition and exercise. Curr Opin Clin Nutr Metab Care. 2014;17(1):32–9.

    PubMed  Google Scholar 

  5. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Frisoli Jr A, Chaves PH, Ingham SJ, Fried LP. Severe osteopenia and osteoporosis, sarcopenia, and frailty status in community-dwelling older women: results from the Women’s Health and Aging Study (WHAS) II. Bone. 2011;48(4):952–7.

    Article  PubMed  Google Scholar 

  7. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–5.

    Article  PubMed  Google Scholar 

  8. Galban CJ, Maderwald S, Stock F, Ladd ME. Age-related changes in skeletal muscle as detected by diffusion tensor magnetic resonance imaging. J Gerontol Ser A Biol Med Sci. 2007;62(4):453–8.

    Article  Google Scholar 

  9. Kent-Braun JA, Ng AV, Young K. Skeletal muscle contractile and noncontractile components in young and older women and men. J Appl Physiol. 2000;88(2):662–8.

    CAS  PubMed  Google Scholar 

  10. Li K, Dortch RD, Welch EB, Bryant ND, Buck AK, Towse TF, et al. Multi-parametric MRI characterization of healthy human thigh muscles at 3.0 T—relaxation, magnetization transfer, fat/water, and diffusion tensor imaging. NMR Biomed. 2014;27(9):1070–84.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ponrartana S, Andrade KE, Wren TA, Ramos-Platt L, Hu HH, Bluml S, et al. Repeatability of chemical-shift-encoded water-fat MRI and diffusion-tensor imaging in lower extremity muscles in children. AJR Am J Roentgenol. 2014;202(6):W567–573.

    Article  PubMed  Google Scholar 

  12. Heemskerk AM, Strijkers GJ, Drost MR, van Bochove GS, Nicolay K. Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging. Radiology. 2007;243(2):413–21.

    Article  PubMed  Google Scholar 

  13. Esposito A, Campana L, Palmisano A, De Cobelli F, Canu T, Santarella F, et al. Magnetic resonance imaging at 7T reveals common events in age-related sarcopenia and in the homeostatic response to muscle sterile injury. PLoS ONE. 2013;8(3), e59308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karampinos DC, King KF, Sutton BP, Georgiadis JG. In vivo study of cross-sectional skeletal muscle fiber asymmetry with diffusion-weighted MRI. Conf Proc: Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2007;2007:327–30.

    Google Scholar 

  15. Zaraiskaya T, Kumbhare D, Noseworthy MD. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging: JMRI. 2006;24(2):402–8.

    Article  PubMed  Google Scholar 

  16. Schwenk M, Mohler J, Wendel C, D’Huyvetter K, Fain M, Taylor-Piliae R, Najafi B. Wearable sensor-based in-home assessment of gait, balance, physical activity for discrimination of frailty status: Baseline Results of the Arizona Frailty Cohort Study. Gerontology. 2015;61(3):258–67.

  17. Maden-Wilkinson TM, McPhee JS, Rittweger J, Jones DA, Degens H. Thigh muscle volume in relation to age, sex and femur volume. Age. 2014;36(1):383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abe T, Thiebaud RS, Loenneke JP, Loftin M, Fukunaga T. Prevalence of site-specific thigh sarcopenia in Japanese men and women. Age. 2013.

  19. Sharma P, Altbach M, Galons JP, Kalb B, Martin DR. Measurement of liver fat fraction and iron with MRI and MR spectroscopy techniques. Diagn Interv Radiol. 2014;20(1):17–26.

    PubMed  PubMed Central  Google Scholar 

  20. Kermarrec E, Budzik JF, Khalil C, Le Thuc V, Hancart-Destee C, Cotten A. In vivo diffusion tensor imaging and tractography of human thigh muscles in healthy subjects. AJR Am J Roentgenol. 2010;195(5):W352–356.

    Article  PubMed  Google Scholar 

  21. Budzik JF, Le Thuc V, Demondion X, Morel M, Chechin D, Cotten A. In vivo MR tractography of thigh muscles using diffusion imaging: initial results. Eur Radiol. 2007;17(12):3079–85.

    Article  CAS  PubMed  Google Scholar 

  22. Yanagisawa O, Shimao D, Maruyama K, Nielsen M, Irie T, Niitsu M. Diffusion-weighted magnetic resonance imaging of human skeletal muscles: gender-, age- and muscle-related differences in apparent diffusion coefficient. Magn Reson Imaging. 2009;27(1):69–78.

    Article  PubMed  Google Scholar 

  23. Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol. 2004;183(2):343–51.

    Article  PubMed  Google Scholar 

  24. Alizai H, Nardo L, Karampinos DC, Joseph GB, Yap SP, Baum T, et al. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women. Eur Radiol. 2012;22(7):1592–600.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sinha U, Malis V, Csapo R, Moghadasi A, Kinugasa R, Sinha S. Age-related differences in strain rate tensor of the medial gastrocnemius muscle during passive plantarflexion and active isometric contraction using velocity encoded MR imaging: Potential index of lateral force transmission. Mag Res Med. 2015;73(5):1852–63.

  26. Correa CS, Baroni BM, Radaelli R, Lanferdini FJ, Cunha Gdos S, Reischak-Oliveira A, et al. Effects of strength training and detraining on knee extensor strength, muscle volume and muscle quality in elderly women. AGE. 2013;35(5):1899–904.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Qi J, Olsen NJ, Price RR, Winston JA, Park JH. Diffusion-weighted imaging of inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging: JMRI. 2008;27(1):212–7.

    Article  PubMed  Google Scholar 

  28. Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol. 2013;48(5):492–8.

    Article  PubMed  Google Scholar 

  29. Lexell J. Human aging, muscle mass, and fiber type composition. The journals of gerontology Series A, Biological sciences and medical sciences. 1995; 50 Spec No:11–16.

  30. Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging. 2010;14(5):362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stenholm S, Rantanen T, Heliovaara M, Koskinen S. The mediating role of C-reactive protein and handgrip strength between obesity and walking limitation. J Am Geriatr Soc. 2008;56(3):462–9.

    Article  PubMed  Google Scholar 

  32. Bryant ND, Li K, Does MD, Barnes S, Gochberg DF, Yankeelov TE, et al. Multi-parametric MRI characterization of inflammation in murine skeletal muscle. NMR Biomed. 2014;27(6):716–25.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Melville.

Ethics declarations

Funding information

Supported in part by NIA R42AG032748 (Mohler/Najafi) 10/15/2012– 10/30/2014 Activity Monitoring in Frailty and Fall Risk.

Conflict of interest

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melville, D.M., Mohler, J., Fain, M. et al. Multi-parametric MR imaging of quadriceps musculature in the setting of clinical frailty syndrome. Skeletal Radiol 45, 583–589 (2016). https://doi.org/10.1007/s00256-015-2313-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2313-3

Keywords

Navigation