Skip to main content

Advertisement

Log in

Measuring physiological and pathological femoral anteversion using a biplanar low-dose X-ray system: validity, reliability, and discriminative ability in cerebral palsy

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

The aims of this study were to evaluate the concurrent validity and reliability of a low-dose biplanar X-ray system (Ld-BPR) for the measurement of femoral anteversion (FA) by comparing Ld-BPR-based three-dimensional measures with CT-scan-based measures and to assess the discriminative ability of this method in children with cerebral palsy.

Materials and methods

Fifty dry femora were scanned using both a CT scan and the Ld-BPR system. Ten femora were artificially modified to mimic a range of anteversion from −30° to +60° and scanned by both modalities. FA was quantified using the images from both modalities and statistically compared for concurrent validity. Intra- and inter-observer reliability of the Ld-BPR system was also determined. Further, Ld-BPR data from 16 hemiplegic and 22 diplegic children were analyzed for its discriminative ability.

Results

The concurrent validity between the Ld-BPR and CT-scan measures was excellent (R 2 = 0.83-0.84) and no significant differences were found. The intra- and inter-trial reliability were excellent (ICCs = 0.98 and 0.97) with limits of agreement of (−2.28°; +2.65°) and (−2.76°; +3.38°) respectively. Further, no significant effects of angle or method were found in the sample of modified femora. Ld-BPR measures for FA were significantly different between healthy and impaired femora.

Conclusions

The excellent concurrent validity with the CT scan modality, the excellent reliability, and the ability to discriminate pathological conditions evaluated by this study make this radiological method suitable for a validated use across hospitals and research institutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dunlap K, Shands Jr AR, Hollister Jr LC, Gaul Jr JS, Streit HA. A new method for determination of torsion of the femur. J Bone Joint Surg (Am Vol). 1953;35-A(2):289–311.

    CAS  Google Scholar 

  2. Cibulka MT. Determination and significance of femoral neck anteversion. Phys Ther. 2004;84(6):550–8.

    PubMed  Google Scholar 

  3. Alvik I. Increased anteversion of the femur as the only manifestation of dysplasia of the hip. Clin Orthop. 1962;22:16–20.

    PubMed  CAS  Google Scholar 

  4. Tonnis D, Heinecke A. Diminished femoral antetorsion syndrome: a cause of pain and osteoarthritis. J Pediatr Orthop. 1991;11(4):419–31.

    Article  PubMed  CAS  Google Scholar 

  5. Gordon GS, Simkiss DE. A systematic review of the evidence for hip surveillance in children with cerebral palsy. J Bone Joint Surg Br Vol. 2006;88(11):1492–6.

    Article  CAS  Google Scholar 

  6. Robin J, Graham HK, Selber P, Dobson F, Smith K, Baker R. Proximal femoral geometry in cerebral palsy: a population-based cross-sectional study. J Bone Joint Surg Br Vol. 2008;90(10):1372–9.

    Article  CAS  Google Scholar 

  7. Shore BJ, Yu X, Desai S, Selber P, Wolfe R, Graham HK. Adductor surgery to prevent hip displacement in children with cerebral palsy: the predictive role of the gross motor function classification system. J Bone Joint Surg (Am Vol). 2012;94(4):326–34.

    Google Scholar 

  8. Pons C, Remy-Neris O, Medee B, Brochard S. Validity and reliability of radiological methods to assess proximal hip geometry in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2013;55(12):1089–102.

    Article  PubMed  Google Scholar 

  9. Tylkowski CM, Rosenthal RK, Simon SR. Proximal femoral osteotomy in cerebral palsy. Clin Orthop Relat Res. 1980;151:183–92.

    PubMed  Google Scholar 

  10. Ounpuu S, DeLuca P, Davis R, Romness M. Long-term effects of femoral derotation osteotomies: an evaluation using three-dimensional gait analysis. J Pediatr Orthop. 2002;22(2):139–45.

    PubMed  Google Scholar 

  11. Pirpiris M, Trivett A, Baker R, Rodda J, Nattrass GR, Graham HK. Femoral derotation osteotomy in spastic diplegia. Proximal or distal? J Bone Joint Surg Br Vol. 2003;85(2):265–72.

    Article  CAS  Google Scholar 

  12. Hernandez RJ, Tachdjian MO, Poznanski AK, Dias LS. CT determination of femoral torsion. AJR Am J Roentgenol. 1981;137(1):97–101.

    Article  PubMed  CAS  Google Scholar 

  13. Ruwe PA, Gage JR, Ozonoff MB, DeLuca PA. Clinical determination of femoral anteversion. A comparison with established techniques. J Bone Joint Surg (Am Vol). 1992;74(6):820–30.

    CAS  Google Scholar 

  14. Abel MF, Wenger DR, Mubarak SJ, Sutherland DH. Quantitative analysis of hip dysplasia in cerebral palsy: a study of radiographs and 3-D reformatted images. J Pediatr Orthop. 1994;14(3):283–9.

    Article  PubMed  CAS  Google Scholar 

  15. Henriksson L. Measurement of femoral neck anteversion and inclination. A radiographic study in children. Acta Orthop Scand Suppl. 1980;186:1–59.

    Article  PubMed  CAS  Google Scholar 

  16. Phillips HO, Greene WB, Guilford WB, Mittelstaedt CA, Gaisie G, Vincent LM, et al. Measurement of femoral torsion: comparison of standard roentgenographic techniques with ultrasound. J Pediatr Orthop. 1985;5(5):546–9.

    Article  PubMed  CAS  Google Scholar 

  17. Miller F, Liang Y, Merlo M, Harcke HT. Measuring anteversion and femoral neck-shaft angle in cerebral palsy. Dev Med Child Neurol. 1997;39(2):113–8.

    Article  PubMed  CAS  Google Scholar 

  18. Tomczak RJ, Guenther KP, Rieber A, Mergo P, Ros PR, Brambs HJ. MR imaging measurement of the femoral antetorsional angle as a new technique: comparison with CT in children and adults. AJR Am J Roentgenol. 1997;168(3):791–4.

    Article  PubMed  CAS  Google Scholar 

  19. Hudson D, Royer T, Richards J. Ultrasound measurements of torsions in the tibia and femur. J Bone Joint Surg (Am Vol). 2006;88(1):138–43.

    Article  Google Scholar 

  20. Chung CY, Lee KM, Park MS, Lee SH, Choi IH, Cho TJ. Validity and reliability of measuring femoral anteversion and neck-shaft angle in patients with cerebral palsy. J Bone Joint Surg (Am Vol). 2010;92(5):1195–205.

    Article  Google Scholar 

  21. Deschenes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, et al. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine. 2010;35(9):989–94.

    Article  PubMed  Google Scholar 

  22. McKenna C, Wade R, Faria R, Yang H, Stirk L, Gummerson N, et al. EOS 2D/3D X-ray imaging system: a systematic review and economic evaluation. Health Technol Assess. 2012;16(14):1–188.

    Article  CAS  Google Scholar 

  23. Wade R, Yang H, McKenna C, Faria R, Gummerson N, Woolacott N. A systematic review of the clinical effectiveness of EOS 2D/3D X-ray imaging system. Eur Spine J. 2013;22(2):296–304.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J, et al. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med. 2005;189(2):287–97. discussion 297–300.

    PubMed  Google Scholar 

  25. Chaibi Y, Cresson T, Aubert B, Hausselle J, Neyret P, Hauger O, et al. Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin. 2012;15(5):457–66.

    Article  PubMed  CAS  Google Scholar 

  26. Buck FM, Guggenberger R, Koch PP, Pfirrmann CW. Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. AJR Am J Roentgenol. 2012;199(5):W607–12.

    Article  PubMed  Google Scholar 

  27. Pomerantz ML, Glaser D, Doan J, Kumar S, Edmonds EW. Three-dimensional biplanar radiography as a new means of accessing femoral version: a comparative study of EOS three-dimensional radiography versus computed tomography. Skelet Radiol. 2015;44(2):255–60.

    Article  Google Scholar 

  28. Assi A, Chaibi Y, Presedo A, Dubousset J, Ghanem I, Skalli W. Three-dimensional reconstructions for asymptomatic and cerebral palsy children's lower limbs using a biplanar X-ray system: a feasibility study. Eur J Radiol. 2013;82(12):2359–64.

    Article  PubMed  Google Scholar 

  29. Despres P, Beaudoin G, Gravel P, de Guise JA. Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging. Med Phys. 2005;32(4):1193–204.

    Article  PubMed  Google Scholar 

  30. Le Bras A, Laporte S, Bousson V, Mitton D, De Guise JA, Laredo JD, et al. 3D reconstruction of the proximal femur with low-dose digital stereoradiography. Comput Aided Surg. 2004;9(3):51–7.

    Article  PubMed  Google Scholar 

  31. Laporte S, Skalli W, de Guise JA, Lavaste F, Mitton D. A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Comput Methods Biomech Biomed Engin. 2003;6(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  32. Reikeras O, Hoiseth A. Torsion of the leg determined by computed tomography. Acta Orthop Scand. 1989;60(3):330–3.

    Article  PubMed  CAS  Google Scholar 

  33. Donner A, Eliasziw M. Sample size requirements for reliability studies. Stat Med. 1987;6(4):441–8.

    Article  PubMed  CAS  Google Scholar 

  34. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.

    Article  PubMed  CAS  Google Scholar 

  35. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    Article  PubMed  CAS  Google Scholar 

  36. Folinais D, Thelen P, Delin C, Radier C, Catonne Y, Lazennec JY. Measuring femoral and rotational alignment: EOS system versus computed tomography. Orthop Traumatol Surg Res. 2013;99(5):509–16.

    Article  PubMed  CAS  Google Scholar 

  37. Lazennec JY, Rousseau MA, Rangel A, Gorin M, Belicourt C, Brusson A, et al. Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: measurements reproducibility with EOS imaging system versus conventional radiographies. Orthop Traumatol Surg Res. 2011;97(4):373–80.

    Article  PubMed  CAS  Google Scholar 

  38. Rosskopf AB, Ramseier LE, Sutter R, Pfirrmann CW, Buck FM. Femoral and tibial torsion measurement in children and adolescents: comparison of 3D models based on low-dose biplanar radiography and low-dose CT. AJR Am J Roentgenol. 2014;202(3):W285–91.

    Article  PubMed  Google Scholar 

  39. Wybier M, Bossard P. Musculoskeletal imaging in progress: the EOS imaging system. Joint Bone Spine: revue du rhumatisme. 2013;80(3):238–43.

    Article  Google Scholar 

  40. Sugano N, Noble PC, Kamaric E. A comparison of alternative methods of measuring femoral anteversion. J Comput Assist Tomogr. 1998;22(4):610–4.

    Article  PubMed  CAS  Google Scholar 

  41. Dreher T, Wolf S, Braatz F, Patikas D, Doderlein L. Internal rotation gait in spastic diplegia--critical considerations for the femoral derotation osteotomy. Gait Posture. 2007;26(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  42. Dreher T, Wolf SI, Heitzmann D, Swartman B, Schuster W, Gantz S, et al. Long-term outcome of femoral derotation osteotomy in children with spastic diplegia. Gait Posture. 2012;36(3):467–70.

    Article  PubMed  Google Scholar 

  43. Murphy SB, Simon SR, Kijewski PK, Wilkinson RH, Griscom NT. Femoral anteversion. J Bone Joint Surg (Am Vol). 1987;69(8):1169–76.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to sincerely thank the radiology department team for their assistance in collecting the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhushan S. Borotikar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thépaut, M., Brochard, S., Leboucher, J. et al. Measuring physiological and pathological femoral anteversion using a biplanar low-dose X-ray system: validity, reliability, and discriminative ability in cerebral palsy. Skeletal Radiol 45, 243–250 (2016). https://doi.org/10.1007/s00256-015-2298-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2298-y

Keywords

Navigation