Skip to main content

Advertisement

Log in

Biochemical imaging of cervical intervertebral discs with glycosaminoglycan chemical exchange saturation transfer magnetic resonance imaging: feasibility and initial results

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging at 3T in the assessment of the GAG content of cervical IVDs in healthy volunteers.

Materials and Methods

Forty-two cervical intervertebral discs of seven healthy volunteers (four females, three males; mean age: 21.4 ± 1.4 years; range: 19–24 years) were examined at a 3T MRI scanner in this prospective study. The MRI protocol comprised standard morphological, sagittal T2 weighted (T2w) images to assess the magnetic resonance imaging (MRI) based grading system for cervical intervertebral disc degeneration (IVD) and biochemical imaging with gagCEST to calculate a region-of-interest analysis of nucleus pulposus (NP) and annulus fibrosus (AF).

Results

GagCEST of cervical IVDs was technically successful at 3T with significant higher gagCEST values in NP compared to AF (1.17 % ± 1.03 % vs. 0.79 % ± 1.75 %; p = 0.005). We found topological differences of gagCEST values of the cervical spine with significant higher gagCEST effects in lower IVDs (r = 1; p = 0). We could demonstrate a significant, negative correlation between gagCEST values and cervical disc degeneration of NP (r = −0.360; p = 0.019). Non-degenerated IVDs had significantly higher gagCEST effects compared to degenerated IVDs in NP (1.76 % ± 0.92 % vs. 0.52 % ± 1.17 %; p < 0.001).

Conclusion

Biochemical imaging of cervical IVDs is feasible at 3T. GagCEST analysis demonstrated a topological GAG distribution of the cervical spine. The depletion of GAG in the NP with increasing level of morphological degeneration can be assessed using gagCEST imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hanvold TN, Veiersted KB, Waersted M. A prospective study of neck, shoulder, and upper back pain among technical school students entering working life. J Adolesc Health. 2010;46(5):488–94.

    Article  PubMed  Google Scholar 

  2. Williams FM, Sambrook PN. Neck and back pain and intervertebral disc degeneration: role of occupational factors. Best Pract Res Clin Rheumatol. 2011;25(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  3. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976). 2006;31(18):2151–61.

    Article  Google Scholar 

  4. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8.

    Article  CAS  Google Scholar 

  5. Weidenbaum M, Foster RJ, Best BA, Saed-Nejad F, Nickoloff E, Newhouse J, et al. Correlating magnetic resonance imaging with the biochemical content of the normal human intervertebral disc. J Orthop Res. 1992;10(4):552–61.

    Article  CAS  PubMed  Google Scholar 

  6. Panagiotacopulos ND, Pope MH, Krag MH, Block R. Water content in human intervertebral discs: part I, measurement by magnetic resonance imaging. Spine (Phila Pa 1976). 1987;12(9):912–7.

    Article  CAS  Google Scholar 

  7. Miyazaki M, Hong SW, Yoon SH, Morishita Y, Wang JC. Reliability of a magnetic resonance imaging-based grading system for cervical intervertebral disc degeneration. J Spinal Disord Tech. 2008;21(4):288–92.

    Article  PubMed  Google Scholar 

  8. Chen C, Huang M, Han Z, Shao L, Xie Y, Wu J, et al. Quantitative T2 magnetic resonance imaging compared to morphological grading of the early cervical intervertebral disc degeneration: an evaluation approach in asymptomatic young adults. PLoS One. 2014;9(2):e87856.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Schmitt B, Zbýn S, Stelzeneder D, Jellus V, Paul D, Lauer L, et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology. 2011;260(1):257–64.

    Article  PubMed  Google Scholar 

  10. Müller-Lutz A, Schleich C, Schmitt B, Topgöz M, Pentang G, Antoch G, et al. Improvement of gagCEST imaging in the human lumbar intervertebral disc by motion correction. Skeletal Radiol. 2015;44(4):505–11.

  11. Haneder S, Apprich SR, Schmitt B, Michaely HJ, Schoenberg SO, Friedrich KM, et al. Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: preliminary results in patients with low-back pain. Eur Radiol. 2013;23(3):861–8.

    Article  PubMed  Google Scholar 

  12. Urban JP, Winlove CP. Pathophysiology of the intervertebral disc and the challenges for MRI. J Magn Reson Imaging. 2007;25(2):419–32.

    Article  PubMed  Google Scholar 

  13. Saar G, Zhang B, Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration changes in the intervertebral disc via chemical exchange saturation transfer. NMR Biomed. 2012;25(2):255–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Eyre DR, Muir H. Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta. 1977;492(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  15. Kim M, Chan Q, Anthony MP, Cheung KM, Samartzis D, Khong PL. Assessment of glycosaminoglycan distribution in human lumbar intervertebral discs using chemical exchange saturation transfer at 3 T: feasibility and initial experience. NMR Biomed. 2011;24(9):1137–44.

    Article  CAS  PubMed  Google Scholar 

  16. Chefd’hotel C, Hermosillo G, Faugeras O. A variational approach to multi-modal image matching. Proceedings of the IEEE Workshop on Variational and Level Set Methods (VLSM’01). VLSM ’01. Washington DC: IEEE Computer Society; 2001. p. 21.

  17. Kim M, Gillen J, Landman BA, Zhou J, van Zijl PC. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med. 2009;61(6):1441–50.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Schleich C, Müller-Lutz A, Matuschke F, Sewerin P, Sengewein R, Schmitt B, et al. Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in patients with spondyloarthritis. J Magn Reson Imaging. 2015. doi:10.1002/jmri.24877.

  19. Stelzeneder D, Welsch GH, Kovács BK, Goed S, Paternostro-Sluga T, Vlychou M, et al. Quantitative T2 evaluation at 3.0T compared to morphological grading of the lumbar intervertebral disc: a standardized evaluation approach in patients with low back pain. Eur J Radiol. 2012;81(2):324–30.

    Article  PubMed  Google Scholar 

  20. Trattnig S, Stelzeneder D, Goed S, Reissegger M, Mamisch TC, Paternostro-Sluga T, et al. Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T. Eur Radiol. 2010;20(11):2715–22.

    Article  PubMed  Google Scholar 

  21. Stelzeneder D, Messner A, Vlychou M, Welsch GH, Scheurecker G, Goed S, et al. Quantitative in vivo MRI evaluation of lumbar facet joints and intervertebral discs using axial T2 mapping. Eur Radiol. 2011;21(11):2388–95.

    Article  PubMed  Google Scholar 

  22. An HS, Anderson PA, Haughton VM, Iatridis JC, Kang JD, Lotz JC, et al. Introduction: disc degeneration—summary. Spine (Phila Pa 1976). 2004;29(23):2677–8.

    Article  Google Scholar 

  23. Rehnitz C, Kupfer J, Streich NA, Burkholder I, Schmitt B, Lauer L, et al. Comparison of biochemical cartilage imaging techniques at 3 T MRI. Osteoarthr Cartil. 2014;22(10):1732–42.

    Article  CAS  PubMed  Google Scholar 

  24. Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105(7):2266–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Siivola SM, Levoska S, Tervonen O, Ilkko E, Vanharanta H, Keinänen-Kiukaanniemi S. MRI changes of cervical spine in asymptomatic and symptomatic young adults. Eur Spine J. 2002;11(4):358–63.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Urban JP, McMullin JF. Swelling pressure of the intervertebral disc: influence of proteoglycan and collagen contents. Biorheology. 1985;22(2):145–57.

    CAS  PubMed  Google Scholar 

  27. Sowa G, Vadalà G, Studer R, Kompel J, Iucu C, Georgescu H, et al. Characterization of intervertebral disc aging: longitudinal analysis of a rabbit model by magnetic resonance imaging, histology, and gene expression. Spine (Phila Pa 1976). 2008;33(17):1821–8.

    Article  Google Scholar 

  28. Figley CR, Yau D, Stroman PW. Attenuation of lower-thoracic, lumbar, and sacral spinal cord motion: implications for imaging human spinal cord structure and function. AJNR Am J Neuroradiol. 2008;29(8):1450–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Müller-Lutz.

Additional information

Christoph Schleich and Anja Müller-Lutz have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schleich, C., Müller-Lutz, A., Zimmermann, L. et al. Biochemical imaging of cervical intervertebral discs with glycosaminoglycan chemical exchange saturation transfer magnetic resonance imaging: feasibility and initial results. Skeletal Radiol 45, 79–85 (2016). https://doi.org/10.1007/s00256-015-2251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2251-0

Keywords

Navigation