Skeletal Radiology

, Volume 44, Issue 12, pp 1727–1733 | Cite as

Prevalence and pattern of gluteus medius and minimus tendon pathology and muscle atrophy in older individuals using MRI

  • Andrew S. ChiEmail author
  • Suzanne S. Long
  • Adam C. Zoga
  • Paul J. Read
  • Diane M. Deely
  • Laurence Parker
  • William B. Morrison
Scientific Article



To evaluate gluteus medius and minimus tendon pathology and muscle atrophy in older individuals using MRI.


A retrospective MRI study of 185 individuals was performed. The inclusion criterion was age ≥50. Exclusion criteria were hip surgery, fracture, infection, tumor, or inadequate image quality. Greater trochanteric bursitis was graded none, mild, moderate, or severe. Gluteus medius, gluteus minimus, and iliopsoas tendinopathy was graded normal, tendinosis, low-grade partial tear, high-grade partial tear, or full thickness tear. Gluteus medius, gluteus minimus, tensor fascia lata, and iliopsoas muscle atrophy was scored using a standard scale. Insertion site of tendinopathy and location of muscle atrophy were assessed. Descriptive and statistical analysis was performed.


There was increasing greater trochanteric bursitis and gluteus medius and minimus tendinopathy and atrophy with advancing age with moderate to strong positive associations (p < 0.0001) for age and tendinopathy, age and atrophy, bursitis and tendinopathy, and tendinopathy and atrophy for the gluteus medius and minimus. There is a weak positive association (p < 0.0001) for age and tensor fascia lata atrophy, and no statistically significant association between age and tendinopathy or between age and atrophy for the iliopsoas. Fisher's exact tests were statistically significant (p < 0.0001) for insertion site of tendon pathology and location of muscle atrophy for the gluteus medius.


Gluteus medius and minimus tendon pathology and muscle atrophy increase with advancing age with progression of tendinosis to low-grade tendon tears to high-grade tendon tears. There is an associated progression in atrophy of these muscles, which may be important in fall-related hip fractures.


Gluteus medius Gluteus minimus Atrophy Tendinopathy Tendon tear MRI 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Pfirrmann CW, Chung CB, Theumann NH, et al. Greater trochanter of the hip: attachment of the abductor mechanism and a complex of three bursae—MR imaging and MR bursography in cadavers and MR imaging in asymptomatic volunteers. Radiology. 2001;221(2):469–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Bunker TD, Esler CN, Leach WJ. Rotator-cuff tear of the hip. J Bone Joint Surg (Br). 1997;79(4):618–20.CrossRefGoogle Scholar
  3. 3.
    Kagan II A. Rotator-cuff tear of the hip. J Bone Joint Surg (Br). 1998;80(1):182–3.Google Scholar
  4. 4.
    Kagan II A. Rotator cuff tears of the hip. Clin Orthop. 1999;368:135–40.CrossRefPubMedGoogle Scholar
  5. 5.
    Cvitanic O, Henzie G, Skezas N, et al. MRI diagnosis of tears of the hip abductor tendons (gluteus medius and gluteus minimus). AJR Am J Roentgenol. 2004;182(1):137–43.CrossRefPubMedGoogle Scholar
  6. 6.
    Dwek J, Pfirrman C, Stanley A, Pathria M, Chung CB. MR imaging of the Hip abductors: normal anatomy and commonly encountered pathology at the greater trochanter. Magn Reson Imaging Clin N Am. 2005;13(4):691–704.CrossRefPubMedGoogle Scholar
  7. 7.
    Kingzett-Taylor A, Tirman PF, Feller J, et al. Tendinosis and tears of gluteus medius and minimus muscles as a cause of hip pain: MR imaging findings. AJR Am J Roentgenol. 1999;173(4):1123–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Lonner JH, Van Kleunen JP. Spontaneous rupture of the gluteus medius and minimus tendons. Am J Orthop. 2002;31(10):579–81.PubMedGoogle Scholar
  9. 9.
    Chung CB, Robertson JE, Cho GJ, Vaughan LM, Copp SN, Resnick D. Gluteus medius tendon tears and avulsive injuries in elderly women: imaging findings in six patients. AJR Am J Roentgenol. 1999;173(2):351–3.CrossRefPubMedGoogle Scholar
  10. 10.
    LaBan MM, Weir SK, Taylor RS. ‘Bald trochanter’ spontaneous rupture of the conjoined tendons of the gluteus medius and minimus presenting as a trochanteric bursitis. Am J Phys Med Rehabil. 2004;83(10):806–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Howell GE, Biggs RE, Bourne RB. Prevalence of abductor mechanism tears of the hips in patients with osteoarthritis. J Arthroplasty. 2001;16(1):121–3.CrossRefPubMedGoogle Scholar
  12. 12.
    Long SS, Surrey DE, Nazarian LN. Sonography of greater trochanteric pain syndrome and the rarity of primary bursitis. AJR Am J Roentgenol. 2013;201(5):1083–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Nakagaki K, Ozaki J, Tomita Y, Tamai S. Fatty degeneration in the supraspinatus muscle after rotator cuff tear. J Shoulder Elb Surg. 1996;5:194–200.CrossRefGoogle Scholar
  14. 14.
    Thomazeau H, Rolland Y, Lucas C, Duval JM, Langlais F. Atrophy of the supraspinatus belly: assessment by MRI in 55 patients with rotator cuff pathology. Acta Orthop Scand. 1996;67:264–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Farley TE, Neumann CH, Steinbach LS, Jahnke AJ, Petersen SS. Full-thickness tears of the rotator cuff of the shoulder: diagnosis with MR imaging. AJR Am J Roentgenol. 1992;158:347–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Moosmayer S, Tariq R, Stiris M, Smith HJ. The natural history of asymptomatic rotator cuff tears: a three-year follow-up of fifty cases. J Bone Joint Surg Am. 2013;95(14):1249–55.CrossRefPubMedGoogle Scholar
  17. 17.
    Tashjian RZ. Epidemiology, natural history, and indications for treatment of rotator cuff tears. Clin Sports Med. 2012;31(4):589–604.CrossRefPubMedGoogle Scholar
  18. 18.
    Tempelhof S, Rupp S, Seil R. Age-related prevalence of rotator cuff tears in asymptomatic shoulders. J Shoulder Elb Surg. 1999;8(4):296–9.CrossRefGoogle Scholar
  19. 19.
    Mellado JM, Calmet J, Olona M, et al. Surgically repaired massive rotator cuff tears: MRI of tendon integrity, muscle fatty degeneration, and muscle atrophy correlated with intraoperative and clinical findings. AJR Am J Roentgenol. 2005;184(5):1456–63.CrossRefPubMedGoogle Scholar
  20. 20.
    Bigliani LU, Cordasco FA, McIlveen SJ, Musso ES. Operative repair of massive rotator cuff tears: long-term results. J Shoulder Elb Surg. 1992;1:120–30.CrossRefGoogle Scholar
  21. 21.
    Rokito AS, Cuomo F, Gallagher MA, Zuckerman JD. Long-term functional outcome of repair of large and massive chronic tears of the rotator cuff. J Bone Joint Surg Am. 1999;81:991–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Harryman DT, Mack LA, Wang KY, Jackins SE, Richardson ML, Matsen FA. Repairs of the rotator cuff: correlation of functional results with integrity of the cuff. J Bone Joint Surg Am. 1991;73:982–9.PubMedGoogle Scholar
  23. 23.
    Goutallier D, Postel JM, Gleyze P, Leguilloux P, Van Driessche S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elb Surg. 2003;12(6):550–4.CrossRefGoogle Scholar
  24. 24.
    Beck M, Sledge JB, Gautier E, et al. The anatomy and function of the gluteus minimus muscle. J Bone Joint Surg (Br). 2000;82(3):358–63.CrossRefGoogle Scholar
  25. 25.
    Anderson FC, Pandy MG. Individual muscle contributions to support in normal walking. Gait Posture. 2003;17(2):159–69.CrossRefPubMedGoogle Scholar
  26. 26.
    Maquet PGJ. Biomechanics of the Hip. Berlin: Springer; 1985.CrossRefGoogle Scholar
  27. 27.
    Gottschalk F, Kourosh S, Leveau B. The functional anatomy of tensor fasciae latae and gluteus medius and minimus. J Anat. 1989;166:179–89.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Lang T, Koyama A, Li C, et al. Pelvic body composition measurements by quantitative computed tomography: association with recent hip fracture. Bone. 2008;42(4):798–805.CrossRefPubMedGoogle Scholar
  29. 29.
    Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res. 2010;25:513–9.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Domb BG, Botser I, Giordano BD. Outcomes of endoscopic gluteus medius repair with minimum 2-year follow-up. Am J Sports Med. 2013;41(5):988–97.CrossRefPubMedGoogle Scholar
  31. 31.
    Domb BG, Nasser RM, Botser IB. Partial-thickness tears of the gluteus medius: rationale and technique for trans-tendinous endoscopic repair. Arthroscopy. 2010;26(12):1697–705.CrossRefPubMedGoogle Scholar
  32. 32.
    Yanke AB, Hart MA, McCormick F, Nho SJ. Endoscopic repair of a gluteus medius tear at the musculotendinous junction. Arthrosc Tech. 2013;2(2):e69–72.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Fisher DA, Almand JD, Watts MR. Operative repair of bilateral spontaneous gluteus medius and minimus tendon ruptures. A case report. J Bone Joint Surg Am. 2007;89(5):1103–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Voos JE, Shindle MK, Pruett A, Asnis PD, Kelly BT. Endoscopic repair of gluteus medius tendon tears of the hip. Am J Sports Med. 2009;37(4):743–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Makridis KG, Lequesne M, Bard H, Djian P. Clinical and MRI results in 67 patients operated for gluteus medius and minimus tendon tears with a median follow-up of 4.6 years. Orthop Traumatol Surg Res. 2014;100(8):849–53.CrossRefPubMedGoogle Scholar
  36. 36.
    Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop. 1994;304:78–83.PubMedGoogle Scholar
  37. 37.
    Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elb Surg. 1999;8:599–605.CrossRefGoogle Scholar
  38. 38.
    Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998;85:115–22.PubMedGoogle Scholar
  39. 39.
    Engelken F, Wassilew GI, Köhlitz T, et al. Assessment of fatty degeneration of the gluteal muscles in patients with THA using MRI: reliability and accuracy of the goutallier and quartile classification systems. J Arthroplasty. 2014;29(1):149–53.CrossRefPubMedGoogle Scholar
  40. 40.
    Khan KM, Cook JL, Bonar F, Harcourt P, Astrom M. Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med. 1999;27(6):393–408.CrossRefPubMedGoogle Scholar
  41. 41.
    Pfirrmann CW, Notzli HP, Dora C, Hodler J, Zanetti M. Abductor tendons and muscles assessed at MR imaging after total hip arthroplasty in asymptomatic and symptomatic patients. Radiology. 2005;235(3):969–76.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2015

Authors and Affiliations

  • Andrew S. Chi
    • 1
    Email author
  • Suzanne S. Long
    • 2
  • Adam C. Zoga
    • 2
  • Paul J. Read
    • 2
  • Diane M. Deely
    • 2
  • Laurence Parker
    • 2
  • William B. Morrison
    • 2
  1. 1.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of RadiologyThomas Jefferson University HospitalPhiladelphiaUSA

Personalised recommendations