Skip to main content

Advertisement

Log in

Peripheral nerve MRI: precision and reproducibility of T2*-derived measurements at 3.0-T

A feasibility study

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To prospectively evaluate the precision and reproducibility of T2*-derived measurements of the peripheral nerves.

Materials and methods

The study was approved by the local ethics committee and written informed consent was obtained. Bilateral upper and lower limb MRI examination was performed in 40 healthy subjects on a 3.0-T scanner. MRI protocol included T1-turbo spin-echo, T2-turbo spin-echo with fat suppression, and multiecho gradient recalled echo. Measurements of T2* times on T2* maps at different anatomical levels were performed. Three authors measured independently and in different sessions at baseline and after 4 weeks. Non-parametric tests and Bland–Altman statistics were used.

Results

Minimum and maximum percentage variability were 10 % and 19 % for T2* (84–91 % of reproducibility). Maximum values of minimum detectable differences between limbs was 16 % (with 95 % CI: 2–37). Intra- and inter-observer agreement of the three radiologists for T2* was considered good. Evaluating the combined influence of the observer and of the repeated measurements the reproducibility was 87–98 %.

Conclusions

T2* measurement of the peripheral nerves is precise and reproducible. The healthy contralateral side can be used as an internal control. Variations in T2* values up to 16 % have to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kermarrec E, Demondion X, Khalil C, Le Thuc V, Boutry N, Cotten A. Ultrasound and magnetic resonance imaging of the peripheral nerves: current techniques, promising directions, and open issues. Semin Musculoskelet Radiol. 2010;14(5):463–72.

    Article  PubMed  Google Scholar 

  2. Gambarota G. T2 relaxometry of human median nerve. Semin Musculoskelet Radiol. 2009;13(1):24–8.

    Article  PubMed  Google Scholar 

  3. Bendszus M, Stoll G. Technology insight: visualizing peripheral nerve injury using MRI. Nat Clin Pract Neurol. 2005;1(1):45–53.

    Article  PubMed  Google Scholar 

  4. Bäumer P, Pham M, Ruetters M, et al. Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology. 2014;273(1):185–93.

    Article  PubMed  Google Scholar 

  5. Juras V, Apprich S, Szomolanyi P, Bieri O, Deligianni X, Trattnig S. Bi-exponential T2 analysis of healthy and diseased Achilles tendons: an in vivo preliminary magnetic resonance study and correlation with clinical score. Eur Radiol. 2013;23(10):2814–22.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Andreisek G, Weiger M. T2* mapping of articular cartilage: current status of research and first clinical applications. Invest Radiol. 2014;49(1):57–62.

    Article  PubMed  Google Scholar 

  7. Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson. 2010;207(2):304–11.

    Article  CAS  PubMed  Google Scholar 

  8. Juras V, Zbyn S, Pressl C, et al. Regional variations of T-2* in healthy and pathologic achilles tendon in vivo at 7 Tesla: preliminary results. Magn Reson Med. 2012;68(5):1607–13.

    Article  PubMed  Google Scholar 

  9. Hwang D, Kim DH, Du YP. In vivo multi-slice mapping of myelin water content using T2* decay. Neuroimage. 2010;52(1):198–204.

    Article  PubMed  Google Scholar 

  10. Zhang X, Zhang F, Lu L, Li H, Wen X, Shen J. MR imaging and T2 measurements in peripheral nerve repair with activation of Toll-like receptor 4 of neurotmesis. Eur Radiol. 2014;24(5):1145–52.

    Article  PubMed  Google Scholar 

  11. Stoll G, Bendszus M. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience. 2009;158(3):1151–60.

    Article  CAS  PubMed  Google Scholar 

  12. Bitar R, Leung G, Perng R, et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics. 2006;26:513–37.

    Article  PubMed  Google Scholar 

  13. Tagliafico A, Martinoli C. Reliability of side-to-side sonographic cross-sectional area measurements of upper extremity nerves in healthy volunteers. J Ultrasound Med. 2013;32(3):457–62.

    PubMed  Google Scholar 

  14. Tagliafico A, Cadoni A, Fisci E, Bignotti B, Padua L, Martinoli C. Reliability of side-to-side ultrasound cross-sectional area measurements of lower extremity nerves in healthy subjects. Muscle Nerve. 2012;46(5):717–22.

    Article  PubMed  Google Scholar 

  15. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  CAS  PubMed  Google Scholar 

  16. Bland JM, Altman DG. Measurement error proportional to the mean. BMJ. 1996;313(7049):106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bland JM, Altman DG. Measurement error. BMJ. 1996;313(7059):744.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Padhani AR, Hayes C, Landau S, Leach MO. Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed. 2002;15(2):143–53.

    Article  PubMed  Google Scholar 

  19. Tagliafico A, Calabrese M, Puntoni M, et al. Brachial plexus MR imaging: accuracy and reproducibility of DTI-derived measurements and fibre tractography at 3.0-T. Eur Radiol. 2011;21(8):1764–71.

    Article  PubMed  Google Scholar 

  20. Di Leo G, Di Terlizzi F, Flor N, Morganti A, Sardanelli F. Measurement of renal volume using respiratory-gated MRI in subjects without known kidney disease: intraobserver, interobserver, and interstudy reproducibility. Eur J Radiol. 2011;80(3):e212–6.

    Article  PubMed  Google Scholar 

  21. Farrell JA, Landman BA, Jones CK, et al. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J Magn Reson Imaging. 2007;26(3):756–67.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Bradley Jr WG. MR appearance of hemorrhage in the brain. Radiology. 1993;189(1):15–26.

    Article  PubMed  Google Scholar 

  23. Lotan CS, Miller SK, Cranney GB, Pohost GM, Elgavish GA. The effect of postinfarction intramyocardial hemorrhage on transverse relaxation time. Magn Reson Med. 1992;23(2):346–55.

    Article  CAS  PubMed  Google Scholar 

  24. Mamisch TC, Hughes T, Mosher TJ, et al. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol. 2012;41(3):287–92.

    Article  PubMed  Google Scholar 

  25. Kali A, Tang RL, Kumar A, Min JK, Dharmakumar R. Detection of acute reperfusion myocardial hemorrhage with cardiac MR imaging: T2 versus T2*. Radiology. 2013;269(2):387–95.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Haacke E, Brown R, Thompson M, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. 1st ed. New York: Wiley-Liss; 1999.

    Google Scholar 

  27. Du J, Pak BC, Znamirowski R, et al. Magic angle effect in magnetic resonance imaging of the Achilles tendon and enthesis. Magn Reson Imaging. 2009;27(4):557–64.

    Article  PubMed  Google Scholar 

  28. Chappell KE, Robson MD, Stonebridge-Foster A, et al. Magic angle effects in MR neurography. AJNR Am J Neuroradiol. 2004;25(3):431–40.

    PubMed  Google Scholar 

Download references

Acknowledgement

The authors state that this work is supported by the Univerisity of Genova with a grant to Alberto Tagliafico (PRA 2014).

Conflict of interest

No conflict of interest.

Author contributions

Alberto Tagliafico, Bianca Bignotti, Giulio Tagliafico, Carlo Martinoli contributed equally to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Tagliafico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagliafico, A., Bignotti, B., Tagliafico, G. et al. Peripheral nerve MRI: precision and reproducibility of T2*-derived measurements at 3.0-T. Skeletal Radiol 44, 679–686 (2015). https://doi.org/10.1007/s00256-015-2106-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2106-8

Keywords

Navigation