Skip to main content
Log in

Labral and cartilage abnormalities in young patients with hip pain: accuracy of 3-Tesla indirect MR arthrography

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Assess the diagnostic accuracy of 3-T indirect magnetic resonance arthrography (iMRA) for hip cartilage and labral pathology detection using arthroscopy as the reference standard and compare it to the published performance of direct magnetic resonance arthrography (dMRA).

Materials and methods

Between 2009 and 2011, 290 patients suspected of having femoroacetabular impingement underwent iMRA. Our study group consisted of 41 of these patients (17 males, mean age 35 years; 24 females, mean age 33 years) who did not have a prior history of hip surgery and who subsequently underwent arthroscopy. Two experienced musculoskeletal radiologists separately evaluated the randomized and anonymized studies for the presence and quadrant location of labral and cartilage pathology. These recorded data were compared to arthroscopic reports.

Results

Forty-one patients had labral pathology, 34 patients had acetabular and 5 patients had femoral cartilage pathology at arthroscopy. Sensitivity, specificity, accuracy, negative- and positive-predictive values for labral lesion detection were respectively 98, 99, 99, 99 and 98 %; for acetabular cartilage lesion detection they were 69, 98, 89, 87 and 95 %; for femoral cartilage lesion detection they were 69, 95, 93 and 39 %. Sensitivities of iMRA by quadrant (anteroinferior, anterosuperior, posteroinferior, posterosuperior) for the labrum were 100.0, 95.0, NA and 85.7 %, for acetabular cartilage were NA, 58.8, NA and 39.5 % and for femoral cartilage were 50.0, 33.3, 75.0 and 75.0 %). NA indicates results not available because of the absence of findings in those quadrants. Specificities of iMRA by quadrant (anteroinferior, anterosuperior, posteroinferior, posterosuperior) for the labrum (95.0, 100.0, 95.1, 67.5 %), acetabular (100.0, 85.7, 92.6, 79.5 %) and femoral cartilage (100.0, 94.7, 96.2, 85.9 %).

Conclusion

iMRA at 3 T is accurate in detecting labral pathology suggesting that it is a viable alternative to dMRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beaulé PE, O’Neill M, Rakhra K. Acetabular labral tears. J Bone Joint Surg Am. 2009;91:701–10.

    Article  PubMed  Google Scholar 

  2. Sampson TG. Arthroscopic treatment for chondral lesions of the hip. Clin Sports Med. 2011;30:331–48.

    Article  PubMed  Google Scholar 

  3. Blankenbaker DG, De Smet AA. Hip injuries in athletes. Radiol Clin North Am. 2010;48:1155–78.

    Article  PubMed  Google Scholar 

  4. Smith TO, Hilton G, Toms AP, Donell ST, Hing CB. The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol. 2011;21:863–74.

    Article  PubMed  Google Scholar 

  5. Schmid MR, Nötzli HP, Zanetti M, Wyss TF, Hodler J. Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology. 2003;226:382–6.

    Article  PubMed  Google Scholar 

  6. Anderson LA, Peters CL, Park BB, Stoddard GJ, Erickson JA, Crim JR. Acetabular cartilage delamination in femoroacetabular impingement. Risk factors and magnetic resonance imaging diagnosis. J Bone Joint Surg Am. 2009;91:305–13.

    Article  PubMed  Google Scholar 

  7. Zaragoza E, Lattanzio P-J, Beaule PE. Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination. Hip Int. 2009;19:18–23.

    PubMed  Google Scholar 

  8. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41:857–65.

    Article  CAS  PubMed  Google Scholar 

  9. Lattanzi R, Petchprapa C, Ascani D, Babb JS, Chu D, Davidovitch RI, et al. Detection of cartilage damage in femoroacetabular impingement with standardized dGEMRIC at 3 T. Cartil Osteoarthr. 2014;22:447–456.

  10. Lattanzi R, Petchprapa C, Glaser C, Dunham K, Mikheev AV, Krigel A, et al. A new method to analyze dGEMRIC measurements in femoroacetabular impingement: preliminary validation against arthroscopic findings. Osteoarthr Cartil. 2012;20:1127–33.

    Article  CAS  PubMed  Google Scholar 

  11. Duvvuri U, Kudchodkar S, Reddy R, Leigh JS. T (1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthr Cartil. 2002;10:838–44.

    Article  CAS  PubMed  Google Scholar 

  12. Jazrawi LM, Alaia MJ, Chang G, Fitzgerald EF, Recht MP. Advances in magnetic resonance imaging of articular cartilage. J Am Acad Orthop Surg. 2011;19:420–9.

    PubMed  Google Scholar 

  13. Raya JG, Melkus G, Adam-Neumair S, Dietrich O, Mützel E, Reiser MF, et al. Diffusion-tensor imaging of human articular cartilage specimens with early signs of cartilage damage. Radiology. 2013;266:831–41.

    Article  PubMed  Google Scholar 

  14. Morrison WB. Indirect MR, arthrography: concepts and controversies. Semin Musculoskelet Radiol. 2005;9:125–34.

    Article  PubMed  Google Scholar 

  15. Zlatkin MB, Pevsner D, Sanders TG, Hancock CR, Ceballos CE, Herrera MF. Acetabular labral tears and cartilage lesions of the hip: indirect MR arthrographic correlation with arthroscopy—a preliminary study. AJR Am J Roentgenol. 2010;194:709–14.

    Article  PubMed  Google Scholar 

  16. Bittersohl B, Steppacher S, Haamberg T, Kim Y-J, Werlen S, Beck M, et al. Cartilage damage in femoroacetabular impingement (FAI): preliminary results on comparison of standard diagnostic vs delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC). Osteoarthr Cartil. 2009;17:1297–306.

    Article  CAS  PubMed  Google Scholar 

  17. Petchprapa CN, Dunham KS, Lattanzi R, Recht MP. Demystifying radial imaging of the hip. Radiographics. 2013;33:E97–E112.

    Article  PubMed  Google Scholar 

  18. Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 2003;112–20.

  19. Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87:1012–8.

    Article  CAS  PubMed  Google Scholar 

  20. Shindle MK, Voos JE, Nho SJ, Heyworth BE, Kelly BT. Arthroscopic management of labral tears in the hip. J Bone Joint Surg Am. 2008;90 Suppl 4:2–19.

    Article  PubMed  Google Scholar 

  21. Safran MR. The acetabular labrum: anatomic and functional characteristics and rationale for surgical intervention. J Am Acad Orthop Surg. 2010;18:338–45.

    PubMed  Google Scholar 

  22. Philippon MJ, Briggs KK, Yen Y-M, Kuppersmith DA. Outcomes following hip arthroscopy for femoroacetabular impingement with associated chondrolabral dysfunction: minimum two-year follow-up. J Bone Joint Surg Br. 2009;91:16–23.

    Article  CAS  PubMed  Google Scholar 

  23. Haviv B, O’Donnell J. Arthroscopic treatment for acetabular labral tears of the hip without bony dysmorphism. Am J Sports Med. 2011;39(Suppl):79S–84S.

    Article  PubMed  Google Scholar 

  24. Safran MR. The acetabular labrum: anatomic and functional characteristics and rationale for surgical intervention. J Am Acad Orthop Surg. 2010;18:338–45.

    PubMed  Google Scholar 

  25. Gold SL, Burge AJ, Potter HG. MRI of Hip Cartilage: Joint Morphology, Structure, and Composition. Clinical orthopaedics and related research [Internet]. 2012 [cited 2012 Jul 20]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/22723242

  26. Hodler J, Yu JS, Goodwin D, Haghighi P, Trudell D, Resnick D. MR arthrography of the hip: improved imaging of the acetabular labrum with histologic correlation in cadavers. AJR. 1995;165:887–91.

    Article  CAS  PubMed  Google Scholar 

  27. Czerny C, Hofmann S, Neuhold A, Tschauner C, Engel A, Recht MP, et al. Lesions of the acetabular labrum: accuracy of MR imaging and MR arthrography in detection and staging. Radiology. 1996;200:225–30.

    Article  CAS  PubMed  Google Scholar 

  28. Sundberg TP, Toomayan GA, Major NM. Evaluation of the acetabular labrum at 3.0-T MR imaging compared with 1.5-T MR arthrography: preliminary experience. Radiology. 2006;238:706–11.

    Article  PubMed  Google Scholar 

  29. Robinson P. Conventional 3-T MRI and 1.5-T MR arthrography of femoroacetabular impingement. AJR Am J Roentgenol. 2012;199:509–15.

    Article  PubMed  Google Scholar 

  30. Reurink G, Jansen SPL, Bisselink JM, Vincken PWJ, Weir A, Moen MH. Reliability and validity of diagnosing acetabular labral lesions with magnetic resonance arthrography. The Journal of Bone and Joint Surgery (American) [Internet]. 2012 [cited 2014 Feb 7];94. Available from: http://jbjs.org/article.aspx?doi=10.2106/JBJS.K.01342

  31. Dinauer PA, Flemming DJ, Murphy KP, Doukas WC. Diagnosis of superior labral lesions: comparison of noncontrast MRI with indirect MR arthrography in unexercised shoulders. Skeletal Radiol. 2007;36:195–202.

    Article  PubMed  Google Scholar 

  32. Song KD, Kwon JW, Yoon YC, Choi S-H. Indirect MR arthrographic findings of adhesive capsulitis. AJR Am J Roentgenol. 2011;197:W1105–1109.

    Article  PubMed  Google Scholar 

  33. Jung JY, Yoon YC, Yi S-K, Yoo J, Choe B-K. Comparison study of indirect MR arthrography and direct MR arthrography of the shoulder. Skeletal Radiol. 2009;38:659–67.

    Article  PubMed  Google Scholar 

  34. Pozzi G, Stradiotti P, Parra CG, Zagra L, Sironi S, Zerbi A. Femoro-acetabular impingement: can indirect MR arthrography be considered a valid method to detect endoarticular damage? A preliminary study. Hip Int. 2009;19:386–91.

    PubMed  Google Scholar 

  35. Toomayan GA, Holman WR, Major NM, Kozlowicz SM, Vail TP. Sensitivity of MR arthrography in the evaluation of acetabular labral tears. Am J Roentgenol. 2006;186:449–53.

    Article  Google Scholar 

  36. Pfirrmann CWA, Duc SR, Zanetti M, Dora C, Hodler J. MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology. 2008;249:236–41.

    Article  PubMed  Google Scholar 

  37. Schmitz MR, Campbell SE, Fajardo RS, Kadrmas WR. Identification of acetabular labral pathological changes in asymptomatic volunteers using optimized, noncontrast 1.5-T magnetic resonance imaging. Am J Sports Med. 2012;40:1337–41.

    Article  PubMed  Google Scholar 

  38. Register B, Pennock AT, Ho CP, Strickland CD, Lawand A, Philippon MJ. Prevalence of abnormal hip findings in asymptomatic participants: a prospective, blinded study. Am J Sports Med. 2012;40:2720–4.

    Article  PubMed  Google Scholar 

Download references

Aknowledgments

The authors thank James Babb for providing his statistical expertise.

Conflicts of interest

No conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine N. Petchprapa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petchprapa, C.N., Rybak, L.D., Dunham, K.S. et al. Labral and cartilage abnormalities in young patients with hip pain: accuracy of 3-Tesla indirect MR arthrography. Skeletal Radiol 44, 97–105 (2015). https://doi.org/10.1007/s00256-014-2013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-014-2013-4

Keywords

Navigation