Computed tomography for preoperative planning in total hip arthroplasty: what radiologists need to know

Abstract

The number of total hip arthroplasties is continuously rising. Although less invasive surgical techniques, sophisticated component design, and intraoperative navigation techniques have been introduced, the rate of peri- and postoperative complications, including dislocations, fractures, nerve palsies, and infections, is still a major clinical problem. Better patient outcome, faster recovery and rehabilitation, and shorter operation times therefore remain to be accomplished. A promising strategy is to use minimally invasive techniques in conjunction with modular implants, aimed at independently reconstructing femoral offset and leg length on the basis of highly accurate preoperative planning. Plain radiographs have clear limitations for the correct estimation of hip joint geometry and bone quality. Three-dimensional assessment based on computed tomography (CT) allows optimizing the choice and positions of implants and anticipating difficulties to be encountered during surgery. Postoperative CT is used to monitor operative translation and plays a role in arthroplastic quality management. Radiologists should be familiar with the needs of orthopedic surgeons in terms of CT acquisition, post-processing, and data transfer. The CT protocol should be optimized to enhance image quality and reduce radiation exposure. When dedicated orthopedic CT protocols and state-of-the-art scanner hardware are used, radiation exposure can be decreased to a level just marginally higher than that of conventional preoperative radiography. Surgeons and radiologists should use similar terminology to avoid misunderstanding and inaccuracies in the transfer of preoperative planning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Kiefer H. Differences and opportunities of THA in the USA, Asia and Europe. In: Chang J-D, Billau K, editors. Bioceramics and alternative bearings in joint arthroplasty. 12th BIOLOX Symposium Proceedings. Darmstadt, Germany: Steinkopff-Verlag; 2007. p. 3–8.

    Chapter  Google Scholar 

  2. 2.

    Malik A, Dorr LD. The science of minimally invasive total hip arthroplasty. Clin Orthop Relat Res. 2007;463:74–84.

    PubMed  Google Scholar 

  3. 3.

    Woolson ST. In the absence of evidence–why bother? A literature review of minimally invasive total hip replacement surgery. Instr Course Lect. 2006;55:189–93.

    PubMed  Google Scholar 

  4. 4.

    Soohoo NF, Farng E, Lieberman JR, Chambers L, Zingmond DS. Factors that predict short-term complication rates after total hip arthroplasty. Clin Orthop Relat Res. 2010;468:2363–71.

    PubMed Central  PubMed  Article  Google Scholar 

  5. 5.

    Goosen JH, Kollen BJ, Castelein RM, Kuipers BM, Verheyen CC. Minimally invasive versus classic procedures in total hip arthroplasty: a double-blind randomized controlled trial. Clin Orthop Relat Res. 2011;469:200–8.

    PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Flecher X, Parratte S, Aubaniac JM, Argenson JN. Three-dimensional custom-designed cementless femoral stem for osteoarthritis secondary to congenital dislocation of the hip. J Bone Joint Surg (Br). 2007;89:1586–91.

    CAS  Article  Google Scholar 

  7. 7.

    Sariali E, Mouttet A, Pasquier G, Durante E, Catone Y. Accuracy of reconstruction of the hip using computerised three-dimensional pre-operative planning and a cementless modular neck. J Bone Joint Surg (Br). 2009;91(3):333–40.

    CAS  Article  Google Scholar 

  8. 8.

    Ilchmann T, Gersbach S, Zwicky L, Clauss M. Standard transgluteal versus minimal invasive anterior approach in hip arthroplasty: a prospective, consecutive cohort study. Orthop Rev (Pavia). 2013;5:e31.

    Article  Google Scholar 

  9. 9.

    Dorr LD, Thomas D, Long WT, Polatin PB, Sirianni LE. Psychologic reasons for patients preferring minimally invasive total hip arthroplasty. Clin Orthop Relat Res. 2007;458:94–100.

    PubMed  Google Scholar 

  10. 10.

    Ciminiello M, Parvizi J, Sharkey PF, Eslampour A, Rothman RH. Total hip arthroplasty: is small incision better? J Arthroplasty. 2006;21:484–8.

    PubMed  Article  Google Scholar 

  11. 11.

    Chimento GF, Pavone V, Sharrock N, Kahn B, Cahill J, Sculco TP. Minimally invasive total hip arthroplasty: a prospective randomized study. J Arthroplasty. 2005;20:139–44.

    PubMed  Article  Google Scholar 

  12. 12.

    Wright JM, Crockett HC, Delgado S, Lyman S, Madsen M, Sculco TP. Mini-incision for total hip arthroplasty: a prospective, controlled investigation with 5-year follow-up evaluation. J Arthroplasty. 2004;19:538–45.

    PubMed  Article  Google Scholar 

  13. 13.

    Kennon RE, Keggi JM, Wetmore RS, Zatorski LE, Huo MH, Keggi KJ. Total hip arthroplasty through a minimally invasive anterior surgical approach. J Bone Joint Surg Am. 2003;85 Suppl 4:39–48.

    PubMed  Google Scholar 

  14. 14.

    Matta JM, Shahrdar C, Ferguson T. Single-incision anterior approach for total hip arthroplasty on an orthopaedic table. Clin Orthop Relat Res. 2005;441:115–24.

    PubMed  Article  Google Scholar 

  15. 15.

    Woolson ST, Mow CS, Syquia JF, Lannin JV, Schurman DJ. Comparison of primary total hip replacements performed with a standard incision or a mini-incision. J Bone Joint Surg Am. 2004;86-A(7):1353–8.

    PubMed  Google Scholar 

  16. 16.

    Husmann O, Rubin PJ, Leyvraz PF, de Roguin B, Argenson JN. Three-dimensional morphology of the proximal femur. J Arthroplasty. 1997;12:444–50.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Krishnan SP, Carrington RW, Mohiyaddin S, Garlick N. Common misconceptions of normal hip joint relations on pelvic radiographs. J Arthroplasty. 2006;2:409–12.

    Article  Google Scholar 

  18. 18.

    Asayama I, Chamnongkich S, Simpson KJ, Kinsey TL, Mahoney OM. Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty. 2005;20:414–20.

    PubMed  Article  Google Scholar 

  19. 19.

    Jolles BM, Zangger P, Leyvraz PF. Factors predisposing to dislocation after primary total hip arthroplasty: a multivariate analysis. J Arthroplasty. 2002;17:282–8.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Ng VY, Kean JR, Glassman AH. Limb-length discrepancy after hip arthroplasty. J Bone Joint Surg Am. 2013;95:1426–36.

    PubMed  Article  Google Scholar 

  21. 21.

    Benedetti MG, Catani F, Benedetti E, Berti L, Di Gioia A, Giannini S. To what extent does leg length discrepancy impair motor activity in patients after total hip arthroplasty? Int Orthop. 2010;34:1115–21.

    PubMed Central  PubMed  Article  Google Scholar 

  22. 22.

    Marcucci M, Indelli PF, Latella L, Poli P, King D. A multimodal approach in total hip arthroplasty preoperative templating. Skelet Radiol. 2013;42:1287–94.

    Article  Google Scholar 

  23. 23.

    Bertz A, Indrekvam K, Ahmed M, Englund E, Sayed-Noor AS. Validity and reliability of preoperative templating in total hip arthroplasty using a digital templating system. Skeletal Radiol. 2012;41:1245–9.

    PubMed  Article  Google Scholar 

  24. 24.

    Kosashvili Y, Shasha N, Olschewski E, Safir O, White L, Gross A, et al. Digital versus conventional templating techniques in preoperative planning for total hip arthroplasty. Can J Surg. 2009;52:6–11.

    PubMed Central  PubMed  Google Scholar 

  25. 25.

    Linclau L, Dokter G, Peene P. Radiological aspects in preoperative planning and postoperative assessment of cementless total hip arthroplasty. Acta Orthop Belg. 1993;59:163–7.

    CAS  PubMed  Google Scholar 

  26. 26.

    Sugano N, Ohzono K, Nishii T, Haraguchi K, Sakai T, Ochi T. Computed-tomography-based computer preoperative planning for total hip arthroplasty. Comput Aided Surg. 1998;3:320–4.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Sariali E, Mouttet A, Pasquier G, Durante E. Three-dimensional hip anatomy in osteoarthritis. Analysis of the femoral offset. J Arthroplasty. 2009;24:990–7.

    PubMed  Article  Google Scholar 

  28. 28.

    Lee CH, Goo JM, Ye HJ, Ye SJ, Park CM, Chun EJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics. 2008;28:1451–9.

    PubMed  Article  Google Scholar 

  29. 29.

    Kalteis T, Handel M, Herold T, Perlick L, Paetzel C, Grifka J. Position of the acetabular cup—accuracy of radiographic calculation compared to CT-based measurement. Eur J Radiol. 2006;58:294–300.

    PubMed  Article  Google Scholar 

  30. 30.

    Huppertz A, Radmer S, Asbach P, Juran R, Schwenke C, Diederichs G, et al. Computed tomography for preoperative planning in minimal-invasive total hip arthroplasty: Radiation exposure and cost analysis. Eur J Radiol. 2011;78:406–13.

    PubMed  Article  Google Scholar 

  31. 31.

    Wall BF, Hart D. Revised radiation doses for typical X-ray examinations. Report on a recent review of doses to patients from medical X-ray examinations in the UK by NRPB. National Radiological Protection Board. Br J Radiol. 1997;70:437–9.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Jurik AG, Jensen LC, Hansen J. Total effective radiation dose from spiral CT and conventional radiography of the pelvis with regard to fracture classification. Acta Radiol. 1996;37:651–4.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Al-Malki MA, Abulfaraj WH, Bhuiyan SI, Kinsara AA. A study on radiographic repeat rate data of several hospitals in Jeddah. Radiat Prot Dosim. 2003;103:323–30.

    CAS  Article  Google Scholar 

  34. 34.

    Sayed-Noor AS, Hugo A, Sjödén GO, Wretenberg P. Leg length discrepancy in total hip arthroplasty: comparison of two methods of measurement. Int Orthop. 2009;33:1189–93.

    PubMed Central  PubMed  Article  Google Scholar 

  35. 35.

    Terry MA, Winell JJ, Green DW, Schneider R, Peterson M, Marx RG, et al. Measurement variance in limb length discrepancy: clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop. 2005;25:197–201.

    PubMed  Article  Google Scholar 

  36. 36.

    Aitken AG, Flodmark O, Newman DE, Kilcoyne RF, Shuman WP, Mack LA. Leg length determination by CT digital radiography. AJR Am J Roentgenol. 1985;144:613–5.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Sabharwal S, Kumar A. Methods for assessing leg length discrepancy. Clin Orthop Relat Res. 2008;466:2910–22.

    PubMed Central  PubMed  Article  Google Scholar 

  38. 38.

    Escott BG, Ravi B, Weathermon AC, Acharya J, Gordon CL, Babyn PS, et al. EOS low-dose radiography: a reliable and accurate upright assessment of lower-limb lengths. J Bone Joint Surg Am. 2013;95:e1831–7.

    PubMed  Article  Google Scholar 

  39. 39.

    Tannast M, Langlotz U, Siebenrock KA, Wiese M, Bernsmann K, Langlotz F. Anatomic referencing of cup orientation in total hip arthroplasty. Clin Orthop Relat Res. 2005;436:144–50.

    PubMed  Article  Google Scholar 

  40. 40.

    Tannast M, Murphy SB, Langlotz F, Anderson SE, Siebenrock KA. Estimation of pelvic tilt on anteroposterior X-rays–a comparison of six parameters. Skelet Radiol. 2006;35:149–55.

    CAS  Article  Google Scholar 

  41. 41.

    Murray DW. The definition and measurement of acetabular orientation. J Bone Joint Surg (Br). 1993;75:228–32.

    CAS  Google Scholar 

  42. 42.

    Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217–20.

    CAS  PubMed  Google Scholar 

  43. 43.

    Murtha PE, Hafez MA, Jaramaz B, DiGioia 3rd AM. Variations in acetabular anatomy with reference to total hip replacement. J Bone Joint Surg (Br). 2008;90:308–13.

    CAS  Article  Google Scholar 

  44. 44.

    Widmer KH. Containment versus impingement: finding a compromise for cup placement in total hip arthroplasty. Int Orthop. 2007;31 Suppl 1:S29–33.

    PubMed  Article  Google Scholar 

  45. 45.

    Iwai S, Kabata T, Maeda T, Kajino Y, Kuroda K, Fujita K, et al. Using simulation before and after rotational acetabular osteotomy to assess the femoroacetabular impingement. Bone Joint J. 2013;95-B(Suppl 15):203.

    Google Scholar 

  46. 46.

    Grupp TM, Weik T, Bloemer W, Knaebel HP. Modular titanium alloy neck adapter failures in hip replacement–failure mode analysis and influence of implant material. BMC Musculoskelet Disord. 2010;11:3.

    PubMed Central  PubMed  Article  Google Scholar 

  47. 47.

    Bosker BH, Verheyen CC, Horstmann WG, Tulp NJ. Poor accuracy of freehand cup positioning during total hip arthroplasty. Arch Orthop Trauma Surg. 2007;127:375–9.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. 48.

    Beckmann J, Stengel D, Tingart M, Götz J, Grifka J, Lüring C. Navigated cup implantation in hip arthroplasty. Acta Orthop. 2009;80:538–44.

    PubMed Central  PubMed  Article  Google Scholar 

  49. 49.

    Murphy SB, Ecker TM, Tannast M. THA performed using conventional and navigated tissue-preserving techniques. Clin Orthop Relat Res. 2006;453:160–7.

    PubMed  Article  Google Scholar 

  50. 50.

    Jaramaz B, DiGioia 3rd AM, Blackwell M, Nikou C. Computer assisted measurement of cup placement in total hip replacement. Clin Orthop Relat Res. 1998;354:70–81.

    PubMed  Article  Google Scholar 

  51. 51.

    Sendtner E, Boluki D, Grifka J. Current state of doing minimal invasive total hip replacement in Germany, the use of new implants and navigation–results of a nation-wide survey. Z Orthop Unfall. 2007;145:297–302.

    CAS  PubMed  Google Scholar 

  52. 52.

    Sotereanos NG, Miller MC, Smith B, Hube R, Sewecke JJ, Wohlrab D. Using intraoperative pelvic landmarks for acetabular component placement in total hip arthroplasty. J Arthroplasty. 2006;21:832–40.

    PubMed  Article  Google Scholar 

  53. 53.

    Steppacher SD, Kowal JH, Murphy SB. Improving cup positioning using a mechanical navigation instrument. Clin Orthop Relat Res. 2011;469:423–8.

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Conflict of interest

Alexander Huppertz has been a full time paid employee of Siemens AG since 1 June 2004. He is Associate Director of the Imaging Science Institute Charité. The Institute is a scientific cooperation between the Charité, University Hospitals of Berlin, Germany and Siemens Healthcare in the form of a private–public partnership (PPP). Sebastian Radmer and Martin Sparmann received speakers’ honoraria for specific speeches from Symbios Orthopédie SA, Switzerland.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Huppertz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huppertz, A., Radmer, S., Wagner, M. et al. Computed tomography for preoperative planning in total hip arthroplasty: what radiologists need to know. Skeletal Radiol 43, 1041–1051 (2014). https://doi.org/10.1007/s00256-014-1853-2

Download citation

Keywords

  • Computed tomography
  • Total hip arthroplasty
  • 3D post-processing
  • Radiation exposure
  • Hip measurements
  • Modular endoprosthesis
  • Minimally invasive surgery