Skip to main content

Advertisement

Log in

T2 relaxometry of the infrapatellar fat pad after arthroscopic surgery

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate the T2 relaxation values of the infrapatellar fat pad (IFP) after arthroscopic surgery.

Materials and methods

This study was approved by the institutional review board; all individuals signed informed consent. We performed MRI in 16 knees from 8 subjects. Prior to imaging, each subject had unilateral arthroscopic knee surgery and an asymptomatic non-operated contralateral knee. We used a 10-echo multiple-TE fast-spin echo pulse sequence for creation of T2 relaxation time maps. Two musculoskeletal radiologists independently placed regions of interest in the IFP, suprapatellar subcutaneous and deep intermuscular adipose tissue. Qualitative assessments were performed to assess fibrotic changes affecting patellar retinaculum and IFP. Statistical analyses of T2 values determined differences between groups, correlation with time after surgery, and cut-off values to differentiate groups.

Results

The average time between arthroscopy and imaging was 3.5 ± 0.4 years. IFP of knees with prior surgery had significantly shorter mean T2 values (133 ± 14 ms) compared with control knees (147 ± 8 ms, P = 0.03). There was no significant difference between operated and control knees regarding T2 values of suprapatellar subcutaneous (P = 0.3) or deep intermuscular adipose tissue (P = 0.2). There was no correlation between IFP T2 values and time after surgery (P > 0.2). IFP T2 values ≤ 139 ms had 75 % sensitivity and 88 % specificity in identifying prior arthroscopy.

Conclusion

Shortening of T2 relaxation values is present in IFP chronically after arthroscopic surgery and may be an indicator of adipose tissue fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dragoo JL, Johnson C, McConnell J. Evaluation and treatment of disorders of the infrapatellar fat pad. Sports Med. 2012;42(1):51–67.

    Article  PubMed  Google Scholar 

  2. Scapinelli R. Vascular anatomy of the human cruciate ligaments and surrounding structures. Clin Anat. 1997;10(3):151–62.

    Article  CAS  PubMed  Google Scholar 

  3. Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10(6):329–35.

    Article  CAS  PubMed  Google Scholar 

  4. Jacobson JA, Lenchik L, Ruhoy MK, Schweitzer ME, Resnick D. MR imaging of the infrapatellar fat pad of Hoffa. Radiographics. 1997;17(3):675–91.

    Article  CAS  PubMed  Google Scholar 

  5. Steadman JR, Dragoo JL, Hines SL, Briggs KK. Arthroscopic release for symptomatic scarring of the anterior interval of the knee. Am J Sports Med. 2008;36(9):1763–9.

    Article  PubMed  Google Scholar 

  6. Paulos LE, Wnorowski DC, Greenwald AE. Infrapatellar contracture syndrome. Diagnosis, treatment, and long-term followup. Am J Sports Med. 1994;22(4):440–9.

    Article  CAS  PubMed  Google Scholar 

  7. Murakami S, Muneta T, Ezura Y, Furuya K, Yamamoto H. Quantitative analysis of synovial fibrosis in the infrapatellar fat pad before and after anterior cruciate ligament reconstruction. Am J Sports Med. 1997;25(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  8. Murakami S, Muneta T, Furuya K, Saito I, Miyasaka N, Yamamoto H. Immunohistologic analysis of synovium in infrapatellar fat pad after anterior cruciate ligament injury. Am J Sports Med. 1995;23(6):763–8.

    Article  CAS  PubMed  Google Scholar 

  9. Discepola F, Park JS, Clopton P, Knoll AN, Austin MJ, Le HBQ, et al. Valid MR imaging predictors of prior knee arthroscopy. Skelet Radiol. 2012;41(1):67–74.

    Article  Google Scholar 

  10. Chung CB, Skaf A, Roger B, Campos J, Stump X, Resnick D. Patellar tendon-lateral femoral condyle friction syndrome: MR imaging in 42 patients. Skelet Radiol. 2001;30(12):694–7.

    Article  CAS  Google Scholar 

  11. Abreu MR, Chung CB, Trudell D, Resnick D. Hoffa’s fat pad injuries and their relationship with anterior cruciate ligament tears: new observations based on MR imaging in patients and MR imaging and anatomic correlation in cadavers. Skelet Radiol. 2008;37(4):301–6.

    Article  Google Scholar 

  12. Kumar D, Alvand A, Beacon JP. Impingement of infrapatellar fat pad (Hoffa’s disease): results of high-portal arthroscopic resection. Arthroscopy. 2007;23(11):1180–6. e1.

    Article  PubMed  Google Scholar 

  13. Ogilvie-Harris DJ, Giddens J. Hoffa’s disease: arthroscopic resection of the infrapatellar fat pad. Arthroscopy. 1994;10(2):184–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bayar A, Turhan E, Ozer T, Keser S, Ege A, Erdem Z. The fate of patellar tendon and infrapatellar fat pad after arthroscopy via central portal. Knee Surg Sports Traumatol Arthrosc. 2008;16(12):1114–20.

    Article  PubMed  Google Scholar 

  15. Von Engelhardt LV, Tokmakidis E, Lahner M, Dàvid A, Haage P, Bouillon B, et al. Hoffa’s fat pad impingement treated arthroscopically: related findings on preoperative MRI in a case series of 62 patients. Arch Orthop Trauma Surg. 2010;130(8):1041–51.

    Article  Google Scholar 

  16. Gohil S, Falconer TM, Breidahl W, Annear PO. Serial MRI and clinical assessment of cyclops lesions. Knee Surg Sports Traumatol Arthrosc. 2013. doi:10.1007/s00167-013-2480-5.

    PubMed  Google Scholar 

  17. Hricak H, Higgins CB, Williams RD. Nuclear magnetic resonance imaging in retroperitoneal fibrosis. AJR Am J Roentgenol. 1983;141(1):35–8.

    Article  CAS  PubMed  Google Scholar 

  18. Bun S-S, Kober F, Jacquier A, Espinosa L, Kalifa J, Bonzi M-F, et al. Value of in vivo T2 measurement for myocardial fibrosis assessment in diabetic mice at 11.75 T. Investig Radiol. 2012;47(5):319–23.

    Article  Google Scholar 

  19. Sugimura H, Kisanuki A, Tamura S, Kihara Y, Watanabe K, Sumiyoshi A. Magnetic resonance imaging of bone marrow changes after irradiation. Investig Radiol. 1994;29(1):35–41.

    Article  CAS  Google Scholar 

  20. Cameron IL, Ord VA, Fullerton GD. Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters. Magn Reson Imaging. 1984;2(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  21. Zeichen J, van Griensven M, Albers I, Lobenhoffer P, Bosch U. Immunohistochemical localization of collagen VI in arthrofibrosis. Arch Orthop Trauma Surg. 1999;119(5–6):315–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Grant support

This study was supported by the National Institutes of Health (R01 AR055612) and MGH Department of Radiology.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Torriani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torriani, M., Taneja, A.K., Hosseini, A. et al. T2 relaxometry of the infrapatellar fat pad after arthroscopic surgery. Skeletal Radiol 43, 315–321 (2014). https://doi.org/10.1007/s00256-013-1791-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1791-4

Keywords

Navigation