Skip to main content

Advertisement

Log in

Epiphyseal stress fractures of finger phalanges in adolescent climbing athletes: a 3.0-Tesla magnetic resonance imaging evaluation

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objectives

To study the value of 3.0-Tesla magnetic resonance imaging for baseline and follow-up assessment of epiphyseal finger phalanx stress fractures in a collective of 7 consecutive adolescent climbing athletes.

Materials and methods

Baseline MRI was performed in 8 fingers of 7 adolescent athletes (mean age 13.8 years, female:male = 2:5) with clinically suspected stress fracture of the fingers acquired during climbing sports. Follow-up MRI was performed after functional therapy with training interruption for 6 weeks (n = 6) and 12 weeks (n = 1). Images were analysed retrospectively and independently by two readers using an MRI grading score from 0 (no pathology) to 4 (bone marrow oedema and clear depiction of a sharp fracture line with surrounding inflammatory soft tissue reaction).

Results

A total of 8 baseline and 7 follow-up MRIs were analysed. In 7 out of 8 fingers a stress fracture line Salter–Harris III and in all fingers a bone marrow oedema were diagnosed at the epiphyseal base of the middle phalanx. The average grading score was 3.37 in the initial MRI and 1.43 in the follow-up MRI indicating fracture healing in all fingers. Kappa value for interobserver variability was 0.86, representing almost perfect interobserver agreement.

Conclusions

3-T MRI is a promising diagnostic technique for baseline assessment of epiphyseal finger phalanx stress fractures and for follow-up evaluation of fracture healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hochholzer T, Schoffl VR. Epiphyseal fractures of the finger middle joints in young sport climbers. Wilderness Environ Med. 2005;16:139–42.

    Article  PubMed  Google Scholar 

  2. Merritt AL, Huang JI. Hand injuries in rock climbing. J Hand Surg Am. 2011;36:1859–61.

    Article  PubMed  Google Scholar 

  3. Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol. 2004;183:343–51.

    Article  PubMed  Google Scholar 

  4. Grossman JW, De Smet AA, Shinki K. Comparison of the accuracy rates of 3-T and 1.5-T MRI of the knee in the diagnosis of meniscal tear. AJR Am J Roentgenol. 2009;193:509–14.

    Article  PubMed  Google Scholar 

  5. Mosher TJ. Musculoskeletal imaging at 3T: current techniques and future applications. Magn Reson Imaging Clin N Am. 2006;14:63–76.

    Article  PubMed  Google Scholar 

  6. Saupe N, Pfirrmann CW, Schmid MR, Schertler T, Manestar M, Weishaupt D. MR imaging of cartilage in cadaveric wrists: comparison between imaging at 1.5 and 3.0 T and gross pathologic inspection. Radiology. 2007;243:180–87.

    Article  PubMed  Google Scholar 

  7. Bauer JS, Banerjee S, Henning TD, Krug R, Majumdar S, Link TM. Fast high-spatial-resolution MRI of the ankle with parallel imaging using GRAPPA at 3 T. AJR Am J Roentgenol. 2007;189:240–5.

    Article  PubMed  Google Scholar 

  8. Chang G, Friedrich KM, Wang L, et al. MRI of the wrist at 7 tesla using an eight-channel array coil combined with parallel imaging: preliminary results. J Magn Reson Imaging. 2010;31:740–46.

    Article  PubMed  Google Scholar 

  9. Goncalves-Matoso V, Guntern D, Gray A, Schnyder P, Picht C, Theumann N. Optimal 3-T MRI for depiction of the finger A2 pulley: comparison between T1-weighted, fat-saturated T2-weighted and gadolinium-enhanced fat-saturated T1-weighted sequences. Skeletal Radiol. 2008;37:307–12.

    Article  PubMed  Google Scholar 

  10. Weber MA, von Stillfried F, Kloth JK, Rehnitz C. Cartilage imaging of the hand and wrist using 3-T MRI. Semin Musculoskelet Radiol. 2012;16:71–87.

    Article  PubMed  Google Scholar 

  11. Sormaala MJ, Ruohola JP, Mattila VM, Koskinen SK, Pihlajamaki HK. Comparison of 1.5T and 3T MRI scanners in evaluation of acute bone stress in the foot. BMC Musculoskelet Disord. 2011;12:128.

    Article  PubMed  Google Scholar 

  12. Ludescher B, Martirosian P, Lenk S, et al. High-resolution magnetic resonance imaging of trabecular bone in the wrist at 3 tesla: initial results. Acta Radiol. 2005;46:306–9.

    Article  PubMed  CAS  Google Scholar 

  13. Bayer T, Schweizer A. Stress fracture of the hook of the hamate as a result of intensive climbing. J Hand Surg Eur Vol. 2009;34:276–77.

    Article  PubMed  Google Scholar 

  14. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.

    Article  PubMed  CAS  Google Scholar 

  15. Dobrindt O, Hoffmeyer B, Ruf J, et al. Blinded-read of bone scintigraphy: the impact on diagnosis and healing time for stress injuries with emphasis on the foot. Clin Nucl Med. 2011;36:186–91.

    Article  PubMed  Google Scholar 

  16. Hodler J, Steinert H, Zanetti M, et al. Radiographically negative stress related bone injury. MR imaging versus two-phase bone scintigraphy. Acta Radiol. 1998;39:416–20.

    PubMed  CAS  Google Scholar 

  17. Krestan C, Hojreh A. Imaging of insufficiency fractures. Eur J Radiol. 2009;71:398–405.

    Article  PubMed  Google Scholar 

  18. Krestan CR, Nemec U, Nemec S. Imaging of insufficiency fractures. Semin Musculoskelet Radiol. 2011;15:198–207.

    Article  PubMed  Google Scholar 

  19. Kurock W, Sennerich T. Epiphysenverletzungen beim jugendlichen Sportler. Dtsch Zeitsch Sportmed. 1986;37:53.

    Google Scholar 

  20. Ricci AR, Mason DE. Little league shoulder: case report and literature review. Del Med J. 2004;76:11–4.

    PubMed  Google Scholar 

  21. Morscher E. Strength and morphology of growth cartilage under hormonal influence of puberty. Animal experiments and clinical study on the etiology of local growth disorders during puberty. Reconstr Surg Traumatol. 1968;10:3–104.

    PubMed  CAS  Google Scholar 

  22. Schweizer A. Biomechanical properties of the crimp grip position in rock climbers. J Biomech. 2001;34:217–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ms. Katharina Hohmann and Dr. Perminder Singh for English language support.

Conflict of interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayer, T., Schöffl, V.R., Lenhart, M. et al. Epiphyseal stress fractures of finger phalanges in adolescent climbing athletes: a 3.0-Tesla magnetic resonance imaging evaluation. Skeletal Radiol 42, 1521–1525 (2013). https://doi.org/10.1007/s00256-013-1694-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1694-4

Keywords

Navigation