Skip to main content

Usefulness of IDEAL T2-weighted FSE and SPGR imaging in reducing metallic artifacts in the postoperative ankles with metallic hardware



The aim of this work is to prospectively compare the effectiveness of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL), T2-weighted fast spin-echo (FSE), and spoiled gradient-echo (SPGR) MR imaging to frequency selective fat suppression (FSFS) protocols for minimizing metallic artifacts in postoperative ankles with metallic hardware.

Materials and methods

The T2-weighted and SPGR imaging with IDEAL and FSFS were performed on 21 ankles of 21 patients with metallic hardware. Two musculoskeletal radiologists independently analyzed techniques for visualization of ankle ligaments and articular cartilage, uniformity of fat saturation, and relative size of the metallic artifacts. A paired t test was used for statistical comparisons of MR images between IDEAL and FSFS groups.


IDEAL T2-weighted FSE and SPGR images enabled significantly improved visualization of articular cartilage (p < 0.05), the size of metallic artifact (p < 0.05), and the uniformity of fat saturation (p < 0.05). However, no significant improvement was found in the visibility of ligaments.


IDEAL T2-weighted FSE and SPGR imaging effectively reduces the degree of tissue-obscuring artifacts produced by fixation hardware in ankle joints and improves image quality compared to FSFS T2-weighted FSE and SPGR imaging. However, visibility of ligaments was not improved using IDEAL imaging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Bergin D, Morrison WB. Postoperative imaging of the ankle and foot. Radiol Clin North Am. 2006;44(3):391–406.

    PubMed  Article  Google Scholar 

  2. 2.

    Choi YS, Potter HG, Chun TJ. MR imaging of cartilage repair in the knee and ankle. Radiographics. 2008;28(4):1043–59.

    PubMed  Article  Google Scholar 

  3. 3.

    Cha JG, Jin W, Lee MH, Kim DH, Park JS, Shin WH, et al. Reducing metallic artifacts in postoperative spinal imaging: usefulness of IDEAL contrast-enhanced T1- and T2-weighted MR imaging–phantom and clinical studies. Radiology. 2011;259(3):885–93.

    PubMed  Article  Google Scholar 

  4. 4.

    Lee MJ, Kim S, Lee SA, Song HT, Huh YM, Kim DH, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27(3):791–803.

    PubMed  Article  Google Scholar 

  5. 5.

    Gerdes CM, Kijowski R, Reeder SB. IDEAL imaging of the musculoskeletal system: robust water fat separation for uniform fat suppression, marrow evaluation, and cartilage imaging. AJR Am J Roentgenol. 2007;189(5):W284–291.

    PubMed  Article  Google Scholar 

  6. 6.

    Fuller S, Reeder S, Shimakawa A, Yu H, Johnson J, Beaulieu C, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) fast spin-echo imaging of the ankle: initial clinical experience. AJR Am J Roentgenol. 2006;187(6):1442–7.

    PubMed  Article  Google Scholar 

  7. 7.

    Yoshioka H, Stevens K, Genovese M, Dillingham MF, Lang P. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology. 2004;231(1):31–8.

    PubMed  Article  Google Scholar 

  8. 8.

    Disler DG, Peters TL, Muscoreil SJ, Ratner LM, Wagle WA, Cousins JP, et al. Fat-suppressed spoiled GRASS imaging of knee hyaline cartilage: technique optimization and comparison with conventional MR imaging. AJR Am J Roentgenol. 1994;163(4):887–92.

    PubMed  CAS  Google Scholar 

  9. 9.

    Vandevenne JE, Vanhoenacker FM, Parizel PM, Butts Pauly K, Lang RK. Reduction of metal artefacts in musculoskeletal MR imaging. JBR-BTR. 2007;90(5):345–9.

    PubMed  CAS  Google Scholar 

  10. 10.

    Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol. 2011;197(3):547–55.

    PubMed  Article  Google Scholar 

  11. 11.

    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med. 2009;62(1):66–76.

    PubMed  Article  Google Scholar 

  13. 13.

    Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med. 2009;61(2):381–90.

    PubMed  Article  Google Scholar 

  14. 14.

    O'Neill PJ, Van Aman SE, Guyton GP. Is MRI adequate to detect lesions in patients with ankle instability? Clin Orthop Relat Res. 2010;468(4):1115–9.

    PubMed  Article  Google Scholar 

  15. 15.

    Siepmann DB, McGovern J, Brittain JH, Reeder SB. High-resolution 3D cartilage imaging with IDEAL SPGR at 3 T. AJR Am J Roentgenol. 2007;189(6):1510–5.

    PubMed  Article  Google Scholar 

  16. 16.

    Hargreaves BA, Gold GE, Beaulieu CF, Vasanawala SS, Nishimura DG, Pauly JM. Comparison of new sequences for high-resolution cartilage imaging. Magn Reson Med. 2003;49(4):700–9.

    PubMed  Article  Google Scholar 

  17. 17.

    Recht M, Bobic V, Burstein D, Disler D, Gold G, Gray M, et al. Magnetic resonance imaging of articular cartilage. Clin Orthop Relat Res. 2001;391 Suppl:S379–396.

    PubMed  Article  Google Scholar 

  18. 18.

    Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol. 1996;167(1):127–32.

    PubMed  CAS  Google Scholar 

  19. 19.

    Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology. 1996;198(1):209–12.

    PubMed  CAS  Google Scholar 

  20. 20.

    Disler DG, McCauley TR, Wirth CR, Fuchs MD. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol. 1995;165(2):377–82.

    PubMed  CAS  Google Scholar 

  21. 21.

    Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. AJR Am J Roentgenol. 2009;193(3):628–38.

    PubMed  Article  Google Scholar 

  22. 22.

    Reeder SB, Wen Z, Yu H, Pineda AR, Gold GE, Markl M, et al. Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med. 2004;51(1):35–45.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Chandnani VP, Ho C, Chu P, Trudell D, Resnick D. Knee hyaline cartilage evaluated with MR imaging: a cadaveric study involving multiple imaging sequences and intraarticular injection of gadolinium and saline solution. Radiology. 1991;178(2):557–61.

    PubMed  CAS  Google Scholar 

  24. 24.

    Totterman S, Weiss SL, Szumowski J, Katzberg RW, Hornak JP, Proskin HM, et al. MR fat suppression technique in the evaluation of normal structures of the knee. J Comput Assist Tomogr. 1989;13(3):473–9.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics. 1999;19(2):373–82.

    PubMed  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jang Gyu Cha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J.B., Cha, J.G., Lee, M.H. et al. Usefulness of IDEAL T2-weighted FSE and SPGR imaging in reducing metallic artifacts in the postoperative ankles with metallic hardware. Skeletal Radiol 42, 239–247 (2013).

Download citation


  • Magnetic resonance imaging
  • Ankle
  • Postoperative imaging