Skip to main content


Log in

Can MR imaging challenge the commonly accepted theory of the pathogenesis of solitary enchondroma of long bone?

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript



It has been widely postulated that enchondromas arise from cartilage remnants that have been displaced from the growth plate into the metaphysis. However, this theory remains unproven. Based on the common occurrence of enchondromas on routine knee MR imaging (2.9 %), one would expect to find displaced cartilage in the metaphysis of skeletally immature individuals on routine knee MR examinations if the above theory was to be supported.

Materials and methods

The electronic databases of a specialist orthopedic hospital and children’s hospital were searched for skeletally immature patients who underwent MR imaging of the knee for a variety of indications. Individuals with Ollier disease or hereditary multiple exostoses were excluded. The MR images were subsequently reviewed by a musculoskeletal radiologist for evidence of displaced cartilage into the metaphysis.


We reviewed 240 MR examinations of the knee that were performed in 209 patients. There were 125 MR studies in male and 115 MR examinations in female patients (age range: 5 months–16 years; median age: 13 years). In 97.1 %, the growth plates around the knee demonstrated a regular appearance. Seven cases (2.9 %) in six patients showed cartilage extension from the growth plate into the metaphysis, which remained in continuity with the growth plate. There were no cases of displaced cartilage into the metaphysis on MRI.


Our study challenges the widely believed theory that enchondromas arise from displaced growth plate remnants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Unni KK. Chondroma. In: Dahlin's bone tumors: general aspects and data on 11,087 cases. Philadelphia: Lippincott-Raven, 1986: 25–45.

  2. Giudici MA, Moser Jr RP, Kransdorf MJ. Cartilaginous bone tumors. Radiol Clin North Am. 1993;31:237–59.

    CAS  PubMed  Google Scholar 

  3. Resnick D, Kang HS. Internal derangements of joints: emphasis on MR imaging. Philadelphia: WB Sanders Co, 1997:745.

  4. Kransdorf MJ, Peterson JJ, Bancroft LW. MR imaging of the knee: incidental osseous lesions. Magn Reson Imaging Clin N Am. 2007;15:13–24.

    Article  PubMed  Google Scholar 

  5. Walden MJ, Murphey MD, Vidal JA. Incidental enchondromas of the knee. AJR Am J Roentgenol. 2008;190:1611–5.

    Article  PubMed  Google Scholar 

  6. Brien EW, Mirra JM, Luck Jr JV. Benign and malignant cartilage tumors of bone and joint: their anatomic and theoretical basis with an emphasis on radiology, pathology and clinical biology. II. Juxtacortical cartilage tumors. Skeletal Radiol. 1999;28:1–20.

    Article  CAS  PubMed  Google Scholar 

  7. Freyschmidt J, Ostertag H, Jundt G. Knorpelbildende Tumoren. In: Freyschmidt J, Ostertag H, Jundt G, editors. Knochentumoren mit Kiefertumoren: Klinik - Radiologie - Pathologie. Berlin Heidelberg New York: Springer; 2010. p. 273–442.

    Chapter  Google Scholar 

  8. Greenspan A, Remagen W. Tumors of Cartilaginous Origin. In: Greenspan A, Remagen W, editors. Differential diagnosis of tumors and tumor-like lesions of bones and joints. Philadelphia: Lippincott-Raven; 1998. p. 123–203.

    Google Scholar 

  9. Jaffe HL, Lichtenstein L. Solitary benign enchondroma of bone. Arch Surg. 1943;46:480–93.

    Article  Google Scholar 

  10. Mirra JM. Intramedullary cartilage- and chondroid-producing tumors. In: Mirra JM, Picci P, Gold RH, editors. Bone tumors: clinical, radiologic and pathologic correlations. Philadelphia: Lea & Febiger; 1989. p. 439–690.

    Google Scholar 

  11. Aoki J, Sone S, Fujioka F, et al. MR of enchondroma and chondrosarcoma: rings and arcs of Gd-DTPA enhancement. J Comput Assist Tomogr. 1991;15:1011–6.

    Article  CAS  PubMed  Google Scholar 

  12. Cohen EK, Kressel HY, Frank TS, et al. Hyaline cartilage-origin bone and soft-tissue neoplasms: MR appearance and histologic correlation. Radiology. 1988;167:477–81.

    CAS  PubMed  Google Scholar 

  13. Laor T, Jaramillo D. MR imaging insights into skeletal maturation: what is normal? Radiology. 2009;250:28–38.

    Article  PubMed  Google Scholar 

  14. Milgram JW. The origins of osteochondromas and enchondromas. A histopathologic study. Clin. Orthop. Relat Res 1983; 264–84.

  15. Stoller DW. Diagnostic imaging: orthopaedics. Salt Lake City, Utah: Amirsys; 2004.

    Google Scholar 

  16. Benign bone tumors. In: Greenfield GB, Arrington JA, eds. Imaging of bone tumors: a multimodality approach. Philadelphia: JB Lippincott Co, 1995:193.

  17. Virchow R. Die krankhaften Geschwülste. Berlin: Verlag von August Hirschwald; 1863.

    Google Scholar 

  18. Virchow R. Über die Entstehung des Enchondrom und seine Beziehung zur Ecchondrosis und Exostosis cartilaginea. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften 1875;760–773.

  19. Bullough P. Bone disease resulting from disturbances in mineral homeostasis. In: Bullough P, editor. Orthopaedic pathology. St. Louis: Mosby; 2004. p. 199–220.

    Google Scholar 

  20. Ecklund K, Doria AS, Jaramillo D. Rickets on MR images. Pediatr Radiol. 1999;29:673–5.

    Article  CAS  PubMed  Google Scholar 

  21. Quan AW, Beall DP, Berry ER, Ly JQ, Sweet CF, Fish JR. A case of osteochondritis dissecans in rickets. Emerg Radiol. 2005;11:219–21.

    Article  PubMed  Google Scholar 

  22. Scherer E. Exostosen, Enchondrome und ihre Beziehung zum Periost. Frankfurt Ztschr F Path. 1928;36:587–605.

    Google Scholar 

  23. Speiser F. Ein Fall von systematisierter Enchondromatose des Skeletts. Virchows Arch. 1928;258:126–60.

    Article  Google Scholar 

  24. Chang CY, Shih C, Penn IW, Tiu CM, Chang T, Wu JJ. Wrist injuries in adolescent gymnasts of a Chinese opera school: radiographic survey. Radiology. 1995;195:861–4.

    CAS  PubMed  Google Scholar 

  25. Laor T, Wall EJ, Vu LP. Physeal widening in the knee due to stress injury in child athletes. AJR Am J Roentgenol. 2006;186:1260–4.

    Article  PubMed  Google Scholar 

  26. Liebling MS, Berdon WE, Ruzal-Shapiro C, Levin TL, Roye Jr D, Wilkinson R. Gymnast's wrist (pseudorickets growth plate abnormality) in adolescent athletes: findings on plain films and MR imaging. AJR Am J Roentgenol. 1995;164:157–9.

    CAS  PubMed  Google Scholar 

  27. Shih C, Chang CY, Penn IW, Tiu CM, Chang T, Wu JJ. Chronically stressed wrists in adolescent gymnasts: MR imaging appearance. Radiology. 1995;195:855–9.

    CAS  PubMed  Google Scholar 

  28. Laor T, Hartman AL, Jaramillo D. Local physeal widening on MR imaging: an incidental finding suggesting prior metaphyseal insult. Pediatr Radiol. 1997;27:654–62.

    Article  CAS  PubMed  Google Scholar 

  29. Grogan DP, Love SM, Ogden JA, Millar EA, Johnson LO. Chondro-osseous growth abnormalities after meningococcemia. A clinical and histopathological study. J Bone Joint Surg Am. 1989;71:920–8.

    CAS  PubMed  Google Scholar 

  30. Kleinman PK, Marks Jr SC, Spevak MR, Belanger PL, Richmond JM. Extension of growth-plate cartilage into the metaphysis: a sign of healing fracture in abused infants. AJR Am J Roentgenol. 1991;156:775–9.

    CAS  PubMed  Google Scholar 

  31. Weinmann JP, Sicher H. Tumors of skeleton. In: Weinmann JP, Sicher H, editors. Bone and bones. St. Louis: C.V. Mosby; 1955. p. 405–7.

    Google Scholar 

  32. Aigner T, Dertinger S, Vornehm SI, Dudhia J, Von der Mark, Kirchner T. Phenotypic diversity of neoplastic chondrocytes and extracellular matrix gene expression in cartilaginous neoplasms. Am J Pathol. 1997;150:2133–41.

    CAS  PubMed  Google Scholar 

  33. Aigner T. Towards a new understanding and classification of chondrogenic neoplasias of the skeleton–biochemistry and cell biology of chondrosarcoma and its variants. Virchows Arch. 2002;441:219–30.

    Article  CAS  PubMed  Google Scholar 

  34. Amary MF, Bacsi K, Maggiani F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 2011;224:334–434.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. Douis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douis, H., Davies, A.M., James, S.L. et al. Can MR imaging challenge the commonly accepted theory of the pathogenesis of solitary enchondroma of long bone?. Skeletal Radiol 41, 1537–1542 (2012).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: