Skip to main content


Log in

Recognition of fibrous dysplasia of bone mimicking skeletal metastasis on 18F-FDG PET/CT imaging

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript



Fibrous dysplasia of bone (FDB) reveals intense 18F-FDG uptake mimicking metastases on 18F-FDG PET/CT. We reviewed sites of FDB revealed by 18F-FDG PET/CT imaging to allow identification of this abnormality.

Materials and Methods

Eleven patients (7 male, 4 female, aged 16–78 years) were evaluated after 55 MBq (0.15 mCi)/kg 18F-FDG utilizing a 16-slice multiple detector CT (MDCT) whole-body PET scanner, with LOR algorithm 3D reconstruction. One- and 2-h imaging was performed in 9 patients. Standard uptake value (SUV) for each lesion, on early and delayed imaging, was calculated. Lesions were confirmed in 6 patients by biopsy. The PET images correlated with MDCT to establish the imaging characteristics.


Solitary lesions were found in 4 patients, two lesions in 1 patient, and in 6 patients there were multiple bone lesions. The SUVearly ranged from 1.23 to 9.64 with an average of 3.76 ± 2.40. The SUVdelayed ranged from 1.76 to 11.42 with an average of 4.51 ± 3.07. The SUVdelayed decreased or increased slightly (−31% to 5%) in 6 of our patients, and increased significantly (11% to 39%) in 3. There was a negative correlation between SUVs and age, as well as the number of affected bones.


In our study, FDB had wide skeletal distribution with variability of 18F-FDG uptake and CT appearance. SUV in the delayed stage was seen to either decrease or increase on dual-time 18F-FDG PET scanning. It is very important to recognize the characteristics of this skeletal dysplasia to allow differentiation from skeletal metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Campanacci M. Bone and soft tissue tumors: clinical features, imaging, pathology and treatment. 2nd ed. New York: Springer; 1999.

    Google Scholar 

  2. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the Mc-Cune-Albright Syndrome. N EngI J Med. 1991;325:1688–95.

    Article  CAS  Google Scholar 

  3. DiCaprio MR, Enneking WF. Fibrous dysplasia. pathophysiology, evaluation, and treatment. J Bone Joint Surg Am. 2005;87:1848–64.

    Article  PubMed  Google Scholar 

  4. Parekh SG, Donthineni-Rao R, Ricchetti E, Lackman RD. Fibrous dysplasia. J Am Acad Orthop Surg. 2004;12:305–13.

    PubMed  Google Scholar 

  5. Fitzpatrick KA, Taljanovic MS, Speer DP, Graham AR, Jacobson JA, Barnes GR, et al. Imaging findings of fibrous dysplasia with histopathologic and intraoperative correlation. AJR Am J Roentgenol. 2004;182:1389–98.

    PubMed  Google Scholar 

  6. Zhuang HM, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42:1412–7.

    CAS  PubMed  Google Scholar 

  7. Demura Y, Tsuchida T, Ishizaki T, Mizuno S, Totani Y, Ameshima S, et al. 18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax. J Nucl Med. 2003;44:540–8.

    CAS  PubMed  Google Scholar 

  8. Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology. 2001;219:774–7.

    CAS  PubMed  Google Scholar 

  9. Schulte M, Brecht-Krauss D, Heymer B, Guhlmann A, Hartwig E, Sarkar MR, et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med. 2000;41:1695–701.

    CAS  PubMed  Google Scholar 

  10. Von Falck C, Rosenthal H, Laenger F, Lotz J, Knapp WH, Galanski M. Avid uptake of [18F]-FDG in fibrous dysplasia can mimic skeletal involvement in Hodgkin’s disease. Eur J Nucl Med Mol Imaging. 2008;35:223.

    Article  Google Scholar 

  11. Stegger L, Juergens KU, Kliesch S, Wormanns D, Weckesser M. Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT. Eur Radiol. 2007;17:1784–6.

    Article  PubMed  Google Scholar 

  12. Zou KH, Tuncali K, Silverman SG. Correlation and simple linear regression. Radiology. 2003;227:617–28.

    Article  PubMed  Google Scholar 

  13. Hellwig D, Graeter TP, Ukena D, Groeschel A, Sybrecht GW, Schaefers H, et al. 18F-FDG PET for mediastinal staging of lung cancer: which SUV threshold makes sense? J Nucl Med. 2007;48:1761–6.

    Article  PubMed  Google Scholar 

  14. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med. 2002;43:871–5.

    PubMed  Google Scholar 

  15. Hart ES, Kelly MH, Brillante B, Chen CC, Ziran N, Lee JS, et al. Onset, progression, and plateau of skeletal lesions in fibrous dysplasia and the relationship to functional outcome. J Bone Miner Res. 2007;22:1468–74.

    Article  PubMed  Google Scholar 

  16. Terpstra L, Rauch F, Plotkin H, Travers R, Glorieux FH. Bone mineralization in polyostotic fibrous dysplasia: histomorphometric analysis. J Bone Miner Res. 2002;17:1949–53.

    Article  PubMed  Google Scholar 

  17. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33:1972–80.

    CAS  PubMed  Google Scholar 

  18. Goodin GS, Shulkin BL, Kaufman RA, McCarville MB. PET/CT characterization of fibroosseous defects in children: 18F-FDG uptake can mimic metastatic disease. AJR Am J Roentgenol. 2006;187:1124–8.

    Article  PubMed  Google Scholar 

  19. Toba M, Hayashida K, Imakita S, Fukuchi K, Kume N, Shimotsu Y, et al. Increased bone mineral turnover without increased glucose utilization in sclerotic and hyperplastic change in fibrous dysplasia. Ann Nucl Med. 1998;12:153–5.

    Article  CAS  PubMed  Google Scholar 

  20. Sahlmann CO, Siefker U, Meller J. Dual time point 2-[18F]fluoro-20-deoxyglucose positron emission tomography in chronic bacterial osteomyelitis. Nucl Med Commun. 2004;25:819–23.

    Article  PubMed  Google Scholar 

  21. Israel O, Goldberg A, Nachtigal A, Militianu D, Bar-Shalom R, Keidar Z, et al. FDG-PET and CT patterns of bone metastases and their relationship to previously administered anti-cancer therapy. Eur J Nucl Med Mol Imaging. 2006;33:1280–4.

    Article  PubMed  Google Scholar 

  22. Nakai T, Okuyamal C, Kubota T, Yamada K, Ushijima Y, Taniike K, et al. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging. 2005;32:1253–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to John Howard Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, M.G., Tian, R., Fan, Q.P. et al. Recognition of fibrous dysplasia of bone mimicking skeletal metastasis on 18F-FDG PET/CT imaging. Skeletal Radiol 40, 295–302 (2011).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: