Skip to main content

Advertisement

Log in

Elastography: modality-specific approaches, clinical applications, and research horizons

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Manual palpation has been used for centuries to provide a relative indication of tissue health and disease. Engineers have sought to make these assessments increasingly quantitative and accessible within daily clinical practice. Since many of the developed techniques involve image-based quantification of tissue deformation in response to an applied force (i.e., “elastography”), such approaches fall squarely within the domain of the radiologist. While commercial elastography analysis software is becoming increasingly available for clinical use, the internal workings of these packages often remain a “black box,” with limited guidance on how to usefully apply the methods toward a meaningful diagnosis. The purpose of the present review article is to introduce some important approaches to elastography that have been developed for the most widely used clinical imaging modalities (e.g., ultrasound, MRI), to provide a basic sense of the underlying physical principles, and to discuss both current and potential (musculoskeletal) applications. The article also seeks to provide a perspective on emerging approaches that are rapidly developing in the research laboratory (e.g., optical coherence tomography, fibered confocal microscopy), and which may eventually gain a clinical foothold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20(4):260–74.

    PubMed  CAS  Google Scholar 

  2. Franz T, Hasler EM, Hagg R, Weiler C, Jakob RP, Mainil-Varlet P. In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthritis Cartilage. 2001;9(6):582–92.

    Article  PubMed  CAS  Google Scholar 

  3. Steiner M. Biomechanics of tendon healing. J Biomech. 1982;15(12):951–8.

    Article  PubMed  CAS  Google Scholar 

  4. Dickenson RP, Hutton WC, Stott JR. The mechanical properties of bone in osteoporosis. J Bone Joint Surg Br. 1981;63-B(2):233–8.

    PubMed  CAS  Google Scholar 

  5. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    Article  PubMed  CAS  Google Scholar 

  6. Dickinson RJ, Hill CR. Measurement of soft-tissue motion using correlation between A-scans. Ultrasound Med Biol. 1982;8(3):263–71.

    Article  PubMed  CAS  Google Scholar 

  7. Wilson LS, Robinson DE. Ultrasonic measurement of small displacements and deformations of tissue. Ultrason Imaging. 1982;4(1):71–82.

    Article  PubMed  CAS  Google Scholar 

  8. Bjaerum S, Torp H, Kristoffersen K. Clutter filters adapted to tissue motion in ultrasound color flow imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(6):693–704.

    Article  PubMed  Google Scholar 

  9. Mai JJ, Insana MF. Strain imaging of internal deformation. Ultrasound Med Biol. 2002;28(11–12):1475–84.

    Article  PubMed  Google Scholar 

  10. O'Donnell M, Skovoroda AR, Shapo BM, Emelianov SY. Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control. 1994;41(3):314–25.

    Article  Google Scholar 

  11. Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, et al. Elastography of breast lesions: initial clinical results. Radiology. 1997;202(1):79–86.

    PubMed  CAS  Google Scholar 

  12. Lorenz A, Sommerfeld HJ, Garcia-Schurmann M, Philippou S, Senge T, Ermert H. A new system for the acquisition of ultrasonic multicompression strain images of the human prostate in vivo. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(5):1147–54.

    Article  PubMed  CAS  Google Scholar 

  13. Bae U, Dighe M, Dubinsky T, Minoshima S, Shamdasani V, Kim Y. Ultrasound thyroid elastography using carotid artery pulsation: preliminary study. J Ultrasound Med. 2007;26(6):797–805.

    PubMed  Google Scholar 

  14. De Korte CL, Pasterkamp G, van der Steen AFW, Woutman HA, Bom N. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation. 2000;102(6):617–23.

    PubMed  Google Scholar 

  15. Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol. 2009;64(12):1196–202.

    Article  PubMed  CAS  Google Scholar 

  16. De Zordo T, Lill SR, Fink C, Feuchtner GM, Jaschke W, Bellmann-Weiler R, et al. Real-time sonoelastography of lateral epicondylitis: comparison of findings between patients and healthy volunteers. AJR Am J Roentgenol. 2009;193(1):180–5.

    Article  PubMed  Google Scholar 

  17. De Zordo T, Fink C, Feuchtner GM, Smekal V, Reindl M, Klauser AS. Real-time sonoelastography findings in healthy Achilles tendons. AJR Am J Roentgenol. 2009;193(2):W134–8.

    Article  PubMed  Google Scholar 

  18. De Zordo T, Chhem R, Smekal V, Feuchtner G, Reindl M, Fink C, et al. Real-time sonoelastography: findings in patients with symptomatic Achilles tendons and comparison to healthy volunteers. Ultraschall Med. 2009; doi:10.1055/s-0028-1109809.

    PubMed  Google Scholar 

  19. Krouskop TA, Dougherty DR, Vinson FS. A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue. J Rehabil Res Dev. 1987;24(2):1–8.

    PubMed  CAS  Google Scholar 

  20. Yamakoshi Y, Sato J, Sato T. Ultrasonic imaging of internal vibration of soft tissue under forced vibration. IEEE Trans Ultrason Ferroelectr Freq Control. 1990;37(2):45–53.

    Article  PubMed  CAS  Google Scholar 

  21. Lerner RM, Parker KJ, Holen J, Gramiak R, Waag RC. Sono-elasticity: medical elasticity images derived from ultrasound signals in mechanically vibrated targets. Proceedings of the 16th International Acoustical Imaging Symposium. New York: Plenum; 1988;317–27.

  22. Parker KJ, Fu D, Graceswki SM, Yeung F, Levinson SF. Vibration sonoelastography and the detectability of lesions. Ultrasound Med Biol. 1998;24(9):1437–47.

    Article  PubMed  CAS  Google Scholar 

  23. Parker KJ, Huang SR, Musulin RA, Lerner RM. Tissue response to mechanical vibrations for "sonoelasticity imaging". Ultrasound Med Biol. 1990;16(3):241–6.

    Article  PubMed  CAS  Google Scholar 

  24. Hoyt K, Parker KJ, Rubens DJ. Real-time shear velocity imaging using sonoelastographic techniques. Ultrasound Med Biol. 2007;33(7):1086–97.

    Article  PubMed  Google Scholar 

  25. Lerner RM, Huang SR, Parker KJ. "Sonoelasticity" images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990;16(3):231–9.

    Article  PubMed  CAS  Google Scholar 

  26. Hoyt K, Castaneda B, Parker KJ. Two-dimensional sonoelastographic shear velocity imaging. Ultrasound Med Biol. 2008;34(2):276–88.

    Article  PubMed  Google Scholar 

  27. Wu Z, Hoyt K, Rubens DJ, Parker KJ. Sonoelastographic imaging of interference patterns for estimation of shear velocity distribution in biomaterials. J Acoust Soc Am. 2006;120(1):535–45.

    Article  PubMed  Google Scholar 

  28. Hoyt K, Parker KJ, Rubens DJ. P2E-7 Sonoelastographic shear velocity imaging: experiments on tissue phantom and prostate. Ultrasonics Symposium, 2006 IEEE; 2006;1686–9.

  29. Taylor LS, Porter BC, Nadasdy G, di Sant'Agnese PA, Pasternack D, Wu Z, et al. Three-dimensional registration of prostate images from histology and ultrasound. Ultrasound Med Biol. 2004;30(2):161–8.

    Article  PubMed  Google Scholar 

  30. Wu Z, Taylor LS, Rubens DJ, Parker KJ. Shear wave focusing for three-dimensional sonoelastography. J Acoust Soc Am. 2002;111(1 Pt 1):439–46.

    Article  PubMed  Google Scholar 

  31. Taylor LS, Porter BC, Rubens DJ, Parker KJ. Three-dimensional sonoelastography: principles and practices. Phys Med Biol. 2000;45(6):1477–94.

    Article  PubMed  CAS  Google Scholar 

  32. Hoyt K, Castaneda B, Zhang M, Nigwekar P, di Sant'agnese PA, Joseph JV, et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomarkers. 2008;4(4–5):213–25.

    PubMed  Google Scholar 

  33. Carstensen EL, Parker KJ, Lerner RM. Elastography in the management of liver disease. Ultrasound Med Biol. 2008;34(10):1535–46.

    Article  PubMed  Google Scholar 

  34. Sandrin L, Catheline S, Tanter M, Fink M. 2D Transient elastography. 2001;485–92.

  35. Catheline S, Wu F, Fink M. A solution to diffraction biases in sonoelasticity: the acoustic impulse technique. J Acoust Soc Am. 1999;105(5):2941–50.

    Article  PubMed  CAS  Google Scholar 

  36. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705–13.

    Article  PubMed  Google Scholar 

  37. Bercoff J, Chaffai S, Tanter M, Sandrin L, Catheline S, Fink M, et al. In vivo breast tumor detection using transient elastography. Ultrasound Med Biol. 2003;29(10):1387–96.

    Article  PubMed  CAS  Google Scholar 

  38. Sabra KG, Conti S, Roux P, Kuperman WA. Passive in vivo elastography from skeletal muscle noise. Appl Phys Lett. 2007;90(19):194101–3.

    Article  Google Scholar 

  39. Nordez A, Gennisson JL, Casari P, Catheline S, Cornu C. Characterization of muscle belly elastic properties during passive stretching using transient elastography. J Biomech. 2008;41(10):2305–11.

    Article  PubMed  CAS  Google Scholar 

  40. Fahey BJ, Nightingale KR, Nelson RC, Palmeri ML, Trahey GE. Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility. Ultrasound Med Biol. 2005;31(9):1185–98.

    Article  PubMed  Google Scholar 

  41. Nightingale K, Soo MS, Palmeri M, Congdon A, Frinkley K, Trahey G. Imaging tissue mechanical properties using impulsive acoustic radiation force. Biomedical Imaging: Nano to Macro, 2004 IEEE International Symposium; 2004;41–4.

  42. Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 2002;28(2):227–35.

    Article  PubMed  Google Scholar 

  43. Sharma AC, Soo MS, Trahey GE, Nightingale KR. Acoustic radiation force impulse imaging of in vivo breast masses. Ultrasonics Symposium, 2004 IEEE. 2004;728–31.

  44. Fahey BJ, Nelson RC, Hsu SJ, Bradway DP, Dumont DM, Trahey GE. In vivo guidance and assessment of liver radio-frequency ablation with acoustic radiation force elastography. Ultrasound Med Biol. 2008;34(10):1590–603.

    Article  PubMed  Google Scholar 

  45. Hsu SJ, Bouchard RR, Dumont DM, Wolf PD, Trahey GE. In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging. Ultrasound Med Biol. 2007;33(11):1706–19.

    Article  PubMed  Google Scholar 

  46. Nightingale K, Fahey B, Hsu S, Frinkley K, Dahl J, Palmeri M, et al. On the potential for guidance of ablation therapy using acoustic radiation force impulse imaging. 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007 ISBI. 2007;1116–9.

  47. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854–7.

    Article  PubMed  CAS  Google Scholar 

  48. Manduca A, Muthupillai R, Rossman PJ, Greenleaf JF, Ehman RL. Image processing for magnetic-resonance elastography. In: Loew MH, Hanson KM, editors. Newport Beach, CA, USA: SPIE. 1996;616–23.

  49. Muthupillai R, Rossman PJ, Lomas DJ, Greenleaf JF, Riederer SJ, Ehman RL. Magnetic resonance imaging of transverse acoustic strain waves. Magn Reson Med. 1996;36(2):266–74.

    Article  PubMed  CAS  Google Scholar 

  50. Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal. 2001;5(4):237–54.

    Article  PubMed  CAS  Google Scholar 

  51. Kruse SA, Smith JA, Lawrence AJ, Dresner MA, Manduca A, Greenleaf JF, et al. Tissue characterization using magnetic resonance elastography: preliminary results. Phys Med Biol. 2000;45(6):1579–90.

    Article  PubMed  CAS  Google Scholar 

  52. McKnight AL, Kugel JL, Rossman PJ, Manduca A, Hartmann LC, Ehman RL. MR elastography of breast cancer: preliminary results. AJR Am J Roentgenol. 2002;178(6):1411–7.

    PubMed  Google Scholar 

  53. Huwart L, Peeters F, Sinkus R, Annet L, Salameh N, ter Beek LC, et al. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed. 2006;19(2):173–9.

    Article  PubMed  Google Scholar 

  54. Xu L, Lin Y, Xi ZN, Shen H, Gao PY. Magnetic resonance elastography of the human brain: a preliminary study. Acta Radiol. 2007;48(1):112–5.

    Article  PubMed  CAS  Google Scholar 

  55. McGee KP, Hubmayr RD, Levin D, Ehman RL. Feasibility of quantifying the mechanical properties of lung parenchyma in a small-animal model using (1)H magnetic resonance elastography (MRE). J Magn Reson Imaging. 2009;29(4):838–45.

    Article  PubMed  Google Scholar 

  56. Dresner MA, Rose GH, Rossman PJ, Muthupillai R, Manduca A, Ehman RL. Magnetic resonance elastography of skeletal muscle. J Magn Reson Imaging. 2001;13(2):269–76.

    Article  PubMed  CAS  Google Scholar 

  57. Sack I, Bernarding J, Braun J. Analysis of wave patterns in MR elastography of skeletal muscle using coupled harmonic oscillator simulations. Magn Reson Imaging. 2002;20(1):95–104.

    Article  PubMed  Google Scholar 

  58. Uffmann K, Maderwald S, Ajaj W, Galban CG, Mateiescu S, Quick HH, et al. In vivo elasticity measurements of extremity skeletal muscle with MR elastography. NMR Biomed. 2004;17(4):181–90.

    Article  PubMed  Google Scholar 

  59. Rigozzi S, Muller R, Snedeker JG. Local strain measurement reveals a varied regional dependence of tensile tendon mechanics on glycosaminoglycan content. J Biomech. 2009;42(10):1547–52.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang Y, Brodell RT, Mostow EN, Vinyard CJ, Marie H. In vivo skin elastography with high-definition optical videos. Skin Res Technol. 2009;15(3):271–82.

    Article  PubMed  CAS  Google Scholar 

  61. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  PubMed  CAS  Google Scholar 

  62. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science. 1997;276(5321):2037–9.

    Article  PubMed  CAS  Google Scholar 

  63. Schmitt J. OCT elastography: imaging microscopic deformation and strain of tissue. Opt Express. 1998;3(6):199–211.

    Article  PubMed  CAS  Google Scholar 

  64. Duncan D, Kirkpatrick S. Performance analysis of a maximum-likelihood speckle motion estimator. Opt Express. 2002;10(18):927–41.

    PubMed  Google Scholar 

  65. Kirkpatrick SJ. Optical elastography. In: Valery VT, editor. SPIE. 2001;58–68.

  66. Duncan DD, Kirkpatrick SJ. Processing algorithms for tracking speckle shifts in optical elastography of biological tissues. J Biomed Opt. 2001;6(4):418–26.

    Article  PubMed  CAS  Google Scholar 

  67. Rogowska J, Patel N, Plummer S, Brezinski ME. Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties. Br J Radiol. 2006;79(945):707–11.

    Article  PubMed  CAS  Google Scholar 

  68. Ko HJ, Tan W, Stack R, Boppart SA. Optical coherence elastography of engineered and developing tissue. Tissue Eng. 2006;12(1):63–73.

    Article  PubMed  Google Scholar 

  69. Kirkpatrick SJ, Wang RK, Duncan DD, Kulesz-Martin M, Lee K. Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography. Opt Express. 2006;14(21):9770–9.

    Article  PubMed  Google Scholar 

  70. Le Goualher G, Perchant A, Genet M, Cavé C, Viellerobe B, Berier F, et al. Towards optical biopsies with an integrated fibered confocal fluorescence microscope. 2004;761–8.

  71. Snedeker JG, Arav AB, Zilberman Y, Pelled G, Gazit D. Functional fibered confocal microscopy: a promising tool for assessing tendon regeneration. Tissue Eng Part C Methods. 2009;15:485–91.

    Article  PubMed  Google Scholar 

  72. Snedeker JG, Pelled G, Zilberman Y, Ben Arav A, Huber E, Muller R, et al. An analytical model for elucidating tendon tissue structure and biomechanical function from in vivo cellular confocal microscopy images. Cells Tissues Organs. 2009;190:111–9.

    Article  PubMed  CAS  Google Scholar 

  73. Snedeker JG, Pelled G, Zilberman Y, Gerhard F, Muller R, Gazit D. Endoscopic cellular microscopy for in vivo biomechanical assessment of tendon function. J Biomed Opt. 2006;11(6):064010.

    Article  PubMed  Google Scholar 

  74. Moulton MJ, Creswell LL, Actis RL, Myers KW, Vannier MW, Szabo BA, et al. An inverse approach to determining myocardial material properties. J Biomech. 1995;28(8):935–48.

    Article  PubMed  CAS  Google Scholar 

  75. Aglyamov S, Skovoroda A, Xie H, Kim K, Rubin JM, O'Donnell M, et al. Model-based reconstructive elasticity imaging using ultrasound. Int J Biomed Imaging. 2007;2007:35830.

    Article  Google Scholar 

  76. Miga MI, Rothney MP, Ou JJ. Modality independent elastography (MIE): potential applications in dermoscopy. Med Phys. 2005;32(5):1308–20.

    Article  PubMed  Google Scholar 

  77. Miga MI. A new approach to elastography using mutual information and finite elements. Phys Med Biol. 2003;48(4):467–80.

    Article  PubMed  Google Scholar 

  78. Baldewsing RA, Danilouchkine MG, Mastik F, Schaar JA, Serruys PW, van der Steen AF. An inverse method for imaging the local elasticity of atherosclerotic coronary plaques. IEEE Trans Inf Technol Biomed. 2008;12(3):277–89.

    Article  PubMed  Google Scholar 

  79. Weiss S, Niederer P, Nava A, Caduff R, Bajka M. Inverse finite element characterization of the human myometrium derived from uniaxial compression experiments. Biomed Tech (Berl). 2008;53(2):52–8.

    Article  Google Scholar 

  80. Lopez O, Amrami KK, Manduca A, Rossman PJ, Ehman RL. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear. J Magn Reson Imaging. 2007;25(2):310–20.

    Article  PubMed  Google Scholar 

  81. Guglielmi G, de Terlizzi F. Quantitative ultrasound in the assessment of osteoporosis. Eur J Radiol. 2009;71(3):425–31.

    Article  PubMed  Google Scholar 

  82. Vilayphiou N, Boutroy S, Sornay-Rendu E, van Rietbergen B, Munoz F, Delmas PD, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone. 2010; doi:10.1016/j.bone.2009.12.015.

    PubMed  Google Scholar 

  83. Basford JR, Jenkyn TR, An KN, Ehman RL, Heers G, Kaufman KR. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch Phys Med Rehabil. 2002;83(11):1530–6.

    Article  PubMed  Google Scholar 

  84. Chen Q, Basford J, An K-N. Ability of magnetic resonance elastography to assess taut bands. Clin Biomech. 2008;23(5):623–9.

    Article  Google Scholar 

  85. Bensamoun SF, Ringleb SI, Chen Q, Ehman RL, An K-N, Brennan M. Thigh muscle stiffness assessed with magnetic resonance elastography in hyperthyroid patientsbefore and after medical treatment. J Magn Reson Imaging. 2007;26(3):708–13.

    Article  PubMed  Google Scholar 

  86. Bensamoun SF, Ringleb SI, Littrell L, Chen Q, Brennan M, Ehman RL, et al. Determination of thigh muscle stiffness using magnetic resonance elastography. J Magn Reson Imaging. 2006;23(2):242–7.

    Article  PubMed  Google Scholar 

  87. Ringleb SI, Bensamoun SF, Chen Q, Manduca A, An KN, Ehman RL. Applications of magnetic resonance elastography to healthy and pathologic skeletal muscle. J Magn Reson Imaging. 2007;25(2):301–9.

    Article  PubMed  Google Scholar 

  88. Domire ZJ, McCullough MB, Chen Q, An KN. Feasibility of using magnetic resonance elastography to study the effect of aging on shear modulus of skeletal muscle. J Appl Biomech. 2009;25(1):93–7.

    PubMed  Google Scholar 

  89. Levinson SF, Shinagawa M, Sato T. Sonoelastic determination of human skeletal muscle elasticity. J Biomech. 1995;28(10):1145–54.

    Article  PubMed  CAS  Google Scholar 

  90. Hoyt K, Kneezel T, Castaneda B, Parker KJ. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity. Phys Med Biol. 2008;53(15):4063–80.

    Article  PubMed  Google Scholar 

  91. Hoyt K, Castaneda B, Parker KJ. 5C-6 Muscle tissue characterization using quantitative sonoelastography: preliminary results. ultrasonics symposium, 2007 IEEE; 2007;365–8.

  92. Hardy PA, Ridler AC, Chiarot CB, Plewes DB, Henkelman RM. Imaging articular cartilage under compression—cartilage elastography. Magn Reson Med. 2005;53(5):1065–73.

    Article  PubMed  Google Scholar 

  93. Neu CP, Hull ML, Walton JH, Buonocore MH. MRI-based technique for determining nonuniform deformations throughout the volume of articular cartilage explants. Magn Reson Med. 2005;53(2):321–8.

    Article  PubMed  CAS  Google Scholar 

  94. Lopez O, Amrami KK, Manduca A, Ehman RL. Characterization of the dynamic shear properties of hyaline cartilage using high-frequency dynamic MR elastography. Magn Reson Med. 2008;59(2):356–64.

    Article  PubMed  Google Scholar 

  95. Konofagou EE, Spalazzi JP, Lu HH. Elastographic imaging of the strain distribution at the anterior cruciate ligament and ACL-bone insertions. Engineering in Medicine and Biology Society, 2005 IEEE-EMBS 2005 27th Annual International Conference; 2005;972–5.

  96. Farron J, Varghese T, Thelen DG. Measurement of tendon strain during muscle twitch contractions using ultrasound elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(1):27–35.

    Article  PubMed  Google Scholar 

  97. Klauser A, Peetrons P. Developments in musculoskeletal ultrasound and clinical applications. Skeletal Radiol. 2009; doi:10.1007/s00256-009-0782-y

    PubMed  Google Scholar 

  98. Thitaikumar A, Righetti R, Krouskop TA, Ophir J. Resolution of axial shear strain elastography. Phys Med Biol. 2006;51(20):5245–57.

    Article  PubMed  Google Scholar 

  99. Othman SF, Xu H, Royston TJ, Magin RL. Microscopic magnetic resonance elastography (microMRE). Magn Reson Med. 2005;54(3):605–15.

    Article  PubMed  Google Scholar 

  100. Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt. 2007;12(5):051403.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jess G. Snedeker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Snedeker, J.G. Elastography: modality-specific approaches, clinical applications, and research horizons. Skeletal Radiol 40, 389–397 (2011). https://doi.org/10.1007/s00256-010-0918-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-010-0918-0

Keywords

Navigation