Advertisement

Skeletal Radiology

, Volume 36, Issue 12, pp 1163–1169 | Cite as

Four-dimensional computed tomographic imaging in the wrist: proof of feasibility in a cadaveric model

  • Shian-Chao Tay
  • Andrew N. Primak
  • Joel G. Fletcher
  • Bernhard Schmidt
  • Kimberly K. Amrami
  • Richard A. Berger
  • Cynthia H. McCollough
Scientific Article

Abstract

Objective

High-resolution real-time three-dimensional (3D) imaging of the moving wrist may provide novel insights into the pathophysiology of joint instability. The purpose of this work was to assess the feasibility of using retrospectively gated spiral computed tomography (CT) to perform four-dimensional (4D) imaging of the moving wrist joint.

Materials and methods

A cadaver forearm from below the elbow was mounted on a motion simulator which performed radioulnar deviation of the wrist at 30 cycles per minute. An electronic trigger from the simulator provided the “electrocardiogram” (ECG) signal required for gated reconstructions. Four-dimensional and 3D images were compared by a blinded observer for image quality and presence of artifacts.

Results

Image quality of 4D images was found to be excellent at the extremes of radial and ulnar deviation (end-motion phases). Some artifacts were seen in mid-motion phases.

Conclusion

4D CT musculoskeletal imaging is feasible. Four-dimensional CT may allow clinicians to assess functional (dynamic) instabilities of the wrist joint.

Keywords

Four-dimensional wrist imaging Dynamic carpal instabilities Retrospectively gated spiral computed tomography Dynamic real-time musculoskeletal imaging Multi-detector CT 

Notes

Acknowledgments

Dr. Tay wishes to acknowledge financial support from Mayo Foundation, Rochester, MN, USA and National Medical Research Council, Singapore. The authors would like to thank Mr. Larry Berglund for the construction of the motion simulator and Ms Kristina Nunez for assistance with manuscript preparation.

References

  1. 1.
    Achenbach S, Ropers D, Kuettner A, et al. Contrast-enhanced coronary artery visualization by dual-source computed tomography—initial experience. Eur J Radiol 2006; 57: 331–335.PubMedCrossRefGoogle Scholar
  2. 2.
    Kopp AF, Ohnesorge B, Flohr T, et al. [Cardiac multidetector-row CT: first clinical results of retrospectively ECG-gated spiral with optimized temporal and spatial resolution]. Rofo Fortschr Geb Rontgenstr Neuen BildgebVerfahr 2000; 172: 429–435.CrossRefGoogle Scholar
  3. 3.
    Nikolaou K, Flohr T, Knez A, et al. Advances in cardiac CT imaging: 64-slice scanner. Int J Cardiovasc Imaging 2004; 20: 535–540.PubMedCrossRefGoogle Scholar
  4. 4.
    Dewey M, Laule M, Krug L, et al. Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 2004; 39: 223–229.PubMedCrossRefGoogle Scholar
  5. 5.
    Dewey M, Muller M, Teige F, et al. Multisegment and halfscan reconstruction of 16-slice computed tomography for assessment of regional and global left ventricular myocardial function. Invest Radiol 2006; 41: 400–409.PubMedCrossRefGoogle Scholar
  6. 6.
    Dewey M, Rutsch W, Schnapauff D, Teige F Hamm B. Coronary artery stenosis quantification using multislice computed tomography. Invest Radiol 2007; 42: 78–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Keall PJ, Starkschall G, Shukla H, et al. Acquiring 4D thoracic CT scans using a multislice helical method. Phys Med Biol 2004; 49: 2053–2067.PubMedCrossRefGoogle Scholar
  8. 8.
    Nehmeh SA, Erdi YE, Pan T, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004; 31: 3179–3186.PubMedCrossRefGoogle Scholar
  9. 9.
    Pan T, Lee TY, Rietzel E, Chen GT. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 2004; 31: 333–340.PubMedCrossRefGoogle Scholar
  10. 10.
    Elgeti T, Proquitte H, Rogalla NE, et al. Evaluation of a reduced dose protocol for respiratory gated lung computed tomography in an animal model. Invest Radiol 2007; 42: 230–234.PubMedCrossRefGoogle Scholar
  11. 11.
    Berdia S, Short WH, Werner FW, Green JK, Panjabi M. The hysteresis effect in carpal kinematics. J Hand Surg [Am] 2006; 31: 594 e1–594 e8.CrossRefGoogle Scholar
  12. 12.
    Short WH, Werner FW, Fortino MD, Mann KA. Analysis of the kinematics of the scaphoid and lunate in the intact wrist joint. Hand Clin 1997; 13: 93–108.PubMedGoogle Scholar
  13. 13.
    Bachofen H, Hildebrandt J. Area analysis of pressure-volume hysteresis in mammalian lungs. J Appl Physiol 1971; 30: 493–497.PubMedGoogle Scholar
  14. 14.
    Watson H, Ottoni L, Pitts EC, Handal AG. Rotary subluxation of the scaphoid: a spectrum of instability. J Hand Surg [Br] 1993; 18: 62–64.CrossRefGoogle Scholar
  15. 15.
    Werner FW, Short WH, Green JK. Changes in patterns of scaphoid and lunate motion during functional arcs of wrist motion induced by ligament division. J Hand Surg [Am] 2005; 30: 1156–1160.CrossRefGoogle Scholar
  16. 16.
    Teoh LC, Yam AK. Anatomic reconstruction of the distal radioulnar ligaments: long-term results. J Hand Surg [Br] 2005; 30: 185–193.CrossRefGoogle Scholar
  17. 17.
    Adams BD, Berger RA. An anatomic reconstruction of the distal radioulnar ligaments for posttraumatic distal radioulnar joint instability. J Hand Surg [Am] 2002; 27: 243–251.CrossRefGoogle Scholar
  18. 18.
    Bickert B, Sauerbier M, Germann G. Scapholunate ligament repair using the Mitek bone anchor. J Hand Surg [Br] 2000; 25: 188–192.CrossRefGoogle Scholar
  19. 19.
    Walsh JJ, Berger RA, Cooney WP. Current status of scapholunate interosseous ligament injuries. J Am Acad Orthop Surg 2002; 10: 32–42.PubMedGoogle Scholar
  20. 20.
    Wolf JM, Weiss AP. Bone-retinaculum-bone reconstruction of scapholunate ligament injuries. Orthop Clin North Am 2001; 32: 241–246, viii.PubMedCrossRefGoogle Scholar
  21. 21.
    Darlis NA, Weiser RW, Sotereanos DG. Partial scapholunate ligament injuries treated with arthroscopic debridement and thermal shrinkage. J Hand Surg [Am] 2005; 30: 908–914.CrossRefGoogle Scholar
  22. 22.
    Watson HK, Weinzweig J, Zeppieri J. The natural progression of scaphoid instability. Hand Clin 1997; 13: 39–49.PubMedGoogle Scholar
  23. 23.
    Berger RA. The anatomy and basic biomechanics of the wrist joint. J Hand Ther 1996; 9: 84–93.PubMedGoogle Scholar
  24. 24.
    Camus EJ, Millot F, Lariviere J, Raoult S, Rtaimate M. Kinematics of the wrist using 2D and 3D analysis: biomechanical and clinical deductions. Surg Radiol Anat 2004; 26: 399–410.PubMedGoogle Scholar
  25. 25.
    Carelsen B, Bakker NH, Strackee SD, et al. 4D rotational X-ray imaging of wrist joint dynamic motion. Med Phys 2005; 32: 2771–2776.PubMedCrossRefGoogle Scholar
  26. 26.
    Crisco JJ, Coburn JC, Moore DC, Akelman E, Weiss AP, Wolfe SW. In vivo radiocarpal kinematics and the dart thrower's motion. J Bone Joint Surg Am 2005; 87: 2729–2740.PubMedCrossRefGoogle Scholar
  27. 27.
    Kobayashi M, Berger RA, Nagy L, et al. Normal kinematics of carpal bones: a three-dimensional analysis of carpal bone motion relative to the radius. J Biomech 1997; 30: 787–793.PubMedCrossRefGoogle Scholar
  28. 28.
    Shim SS, Kim Y, Lim SM. Improvement of image quality with beta-blocker premedication on ECG-gated 16-MDCT coronary angiography. AJR Am J Roentgenol 2005; 184: 649–654.PubMedGoogle Scholar
  29. 29.
    Tay S, Primak A, Fletcher J, Schmidt B, An KN, McCollough CH. Understanding the relationship of image quality to motion velocity in gated-CT imaging: preliminary work for 4D musculoskeletal imaging. J Comput Assist Tomogr 2007 (in press).Google Scholar
  30. 30.
    Ohnesorge B, Flohr T, Becker C, et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 2000; 217: 564–571.PubMedGoogle Scholar
  31. 31.
    Kyriakou Y, Kachelriebeta M, Knaup M, Krause JU, Kalender WA. Impact of the z-flying focal spot on resolution and artifact behavior for a 64-slice spiral CT scanner. Eur Radiol 2006; 16: 1206–1215.PubMedCrossRefGoogle Scholar
  32. 32.
    Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H. Performance evaluation of a 64-slice CT system with z-flying focal spot. Rofo Fortschr Geb Rontgenstr Neuen BildgebVerfahr 2004; 176: 1803–1810.CrossRefGoogle Scholar
  33. 33.
    Taguchi K, Chiang BS, Hein IA. Direct cone-beam cardiac reconstruction algorithm with cardiac banding artifact correction. Med Phys 2006; 33: 521–539.PubMedCrossRefGoogle Scholar
  34. 34.
    McCollough CH, Bruesewitz MR, Daly TR, Zink FE. Motion artifacts in subsecond conventional CT and electron-beam CT: pictorial demonstration of temporal resolution. Radiographics 2000; 20: 1675–1681.PubMedGoogle Scholar
  35. 35.
    Mori S, Endo M, Asakura H. Improvement in banding artefacts in four-dimensional computed tomography for radiotherapy planning. Phys Med Biol 2006; 51: 5231–5244.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaufmann R, Pfaeffle J, Blankenhorn B, Stabile K, Robertson D, Goitz R. Kinematics of the midcarpal and radiocarpal joints in radioulnar deviation: an in vitro study. J Hand Surg [Am] 2005; 30: 937–942.CrossRefGoogle Scholar
  37. 37.
    Greuter MJ, Dorgelo J, Tukker WG, Oudkerk M. Study on motion artifacts in coronary arteries with an anthropomorphic moving heart phantom on an ECG-gated multidetector computed tomography unit. Eur Radiol 2005; 15: 995–1007.PubMedCrossRefGoogle Scholar
  38. 38.
    Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006; 16: 256–68.PubMedCrossRefGoogle Scholar
  39. 39.
    Taguchi K. Temporal resolution the evaluation of candidate algorithms for four-dimensional CT. Med Phys 2003; 30: 640–650.PubMedCrossRefGoogle Scholar

Copyright information

© ISS 2007

Authors and Affiliations

  • Shian-Chao Tay
    • 1
  • Andrew N. Primak
    • 2
  • Joel G. Fletcher
    • 2
    • 3
  • Bernhard Schmidt
    • 4
  • Kimberly K. Amrami
    • 2
  • Richard A. Berger
    • 1
  • Cynthia H. McCollough
    • 2
    • 3
  1. 1.Orthopedics Biomechanics LaboratoryMayo Clinic College of MedicineRochesterUSA
  2. 2.Department of RadiologyMayo Clinic College of MedicineRochesterUSA
  3. 3.CT Innovation CenterMayo Clinic College of MedicineRochesterUSA
  4. 4.Siemens Medical SolutionsForchheimGermany

Personalised recommendations